| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulridx | Structured version Visualization version GIF version | ||
| Description: Utility theorem: index-independent form of df-mulr 17285. (Contributed by Mario Carneiro, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| mulridx | ⊢ .r = Slot (.r‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mulr 17285 | . 2 ⊢ .r = Slot 3 | |
| 2 | 3nn 12319 | . 2 ⊢ 3 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17216 | 1 ⊢ .r = Slot (.r‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6531 3c3 12296 Slot cslot 17200 ndxcnx 17212 .rcmulr 17272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-2 12303 df-3 12304 df-slot 17201 df-ndx 17213 df-mulr 17285 |
| This theorem is referenced by: rngmulr 17315 ressmulr 17321 srngmulr 17326 ipsmulr 17353 odrngmulr 17420 prdsmulr 17473 imasmulr 17532 opprmulfval 20299 sramulr 21137 mpocnfldmul 21322 cnfldmulOLD 21336 zlmmulr 21480 znmul 21502 psrmulr 21902 opsrmulr 22010 matmulr 22376 tngmulr 24583 rlocmulval 33264 resvmulr 33353 opprabs 33497 idlsrgmulr 33522 hlhilsmul 41960 algmulr 43200 mendmulrfval 43207 mnringmulrd 44247 cznrng 48236 cznnring 48237 |
| Copyright terms: Public domain | W3C validator |