| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulridx | Structured version Visualization version GIF version | ||
| Description: Utility theorem: index-independent form of df-mulr 17172. (Contributed by Mario Carneiro, 8-Jun-2013.) |
| Ref | Expression |
|---|---|
| mulridx | ⊢ .r = Slot (.r‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mulr 17172 | . 2 ⊢ .r = Slot 3 | |
| 2 | 3nn 12201 | . 2 ⊢ 3 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17105 | 1 ⊢ .r = Slot (.r‘ndx) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ‘cfv 6481 3c3 12178 Slot cslot 17089 ndxcnx 17101 .rcmulr 17159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-2 12185 df-3 12186 df-slot 17090 df-ndx 17102 df-mulr 17172 |
| This theorem is referenced by: rngmulr 17202 ressmulr 17208 srngmulr 17213 ipsmulr 17240 odrngmulr 17307 prdsmulr 17360 imasmulr 17419 opprmulfval 20255 sramulr 21111 mpocnfldmul 21296 cnfldmulOLD 21310 zlmmulr 21454 znmul 21476 psrmulr 21877 opsrmulr 21985 matmulr 22351 tngmulr 24557 rlocmulval 33231 resvmulr 33297 opprabs 33442 idlsrgmulr 33467 hlhilsmul 41979 algmulr 43208 mendmulrfval 43215 mnringmulrd 44255 cznrng 48291 cznnring 48292 |
| Copyright terms: Public domain | W3C validator |