MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negdi Structured version   Visualization version   GIF version

Theorem negdi 10797
Description: Distribution of negative over addition. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
negdi ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))

Proof of Theorem negdi
StepHypRef Expression
1 subneg 10789 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵))
21negeqd 10733 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − -𝐵) = -(𝐴 + 𝐵))
3 negcl 10739 . . 3 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
4 negsubdi 10796 . . 3 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → -(𝐴 − -𝐵) = (-𝐴 + -𝐵))
53, 4sylan2 592 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − -𝐵) = (-𝐴 + -𝐵))
62, 5eqtr3d 2835 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  (class class class)co 7023  cc 10388   + caddc 10393  cmin 10723  -cneg 10724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-po 5369  df-so 5370  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-ltxr 10533  df-sub 10725  df-neg 10726
This theorem is referenced by:  negdi2  10798  negdii  10824  negdid  10864  mulsub  10937  zeo  11922  xnegdi  12495  ceim1l  13069  binomrisefac  15233  mulgneg2  18019  archirngz  30452
  Copyright terms: Public domain W3C validator