| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subneg | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| subneg | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11342 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
| 2 | 1 | oveq2i 7352 | . . 3 ⊢ (𝐴 − -𝐵) = (𝐴 − (0 − 𝐵)) |
| 3 | 0cn 11099 | . . . 4 ⊢ 0 ∈ ℂ | |
| 4 | subsub 11386 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (0 − 𝐵)) = ((𝐴 − 0) + 𝐵)) | |
| 5 | 3, 4 | mp3an2 1451 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (0 − 𝐵)) = ((𝐴 − 0) + 𝐵)) |
| 6 | 2, 5 | eqtrid 2778 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = ((𝐴 − 0) + 𝐵)) |
| 7 | subid1 11376 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 0) = 𝐴) |
| 9 | 8 | oveq1d 7356 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 0) + 𝐵) = (𝐴 + 𝐵)) |
| 10 | 6, 9 | eqtrd 2766 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 0cc0 11001 + caddc 11004 − cmin 11339 -cneg 11340 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 df-neg 11342 |
| This theorem is referenced by: negneg 11406 negdi 11413 neg2sub 11416 subnegi 11435 subnegd 11474 recextlem1 11742 fzshftral 13510 shftval4 14979 sqreulem 15262 sqreu 15263 fsumshftm 15683 fsumcube 15962 eftlub 16013 summodnegmod 16192 shft2rab 25431 atandm2 26809 atandm4 26811 acosneg 26819 atanneg 26839 atancj 26842 atanlogadd 26846 atanlogsublem 26847 atanlogsub 26848 efiatan2 26849 2efiatan 26850 tanatan 26851 atans2 26863 dvatan 26867 atantayl 26869 wilthlem1 27000 wilthlem3 27002 wilthimp 27004 ftalem7 27011 ppiub 27137 2sqlem11 27362 2sqblem 27364 cos2h 37651 tan2h 37652 ftc1anclem5 37737 2pwp1prm 47620 |
| Copyright terms: Public domain | W3C validator |