| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subneg | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| subneg | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11469 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
| 2 | 1 | oveq2i 7416 | . . 3 ⊢ (𝐴 − -𝐵) = (𝐴 − (0 − 𝐵)) |
| 3 | 0cn 11227 | . . . 4 ⊢ 0 ∈ ℂ | |
| 4 | subsub 11513 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (0 − 𝐵)) = ((𝐴 − 0) + 𝐵)) | |
| 5 | 3, 4 | mp3an2 1451 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (0 − 𝐵)) = ((𝐴 − 0) + 𝐵)) |
| 6 | 2, 5 | eqtrid 2782 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = ((𝐴 − 0) + 𝐵)) |
| 7 | subid1 11503 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 0) = 𝐴) |
| 9 | 8 | oveq1d 7420 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 0) + 𝐵) = (𝐴 + 𝐵)) |
| 10 | 6, 9 | eqtrd 2770 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 0cc0 11129 + caddc 11132 − cmin 11466 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: negneg 11533 negdi 11540 neg2sub 11543 subnegi 11562 subnegd 11601 recextlem1 11867 fzshftral 13632 shftval4 15096 sqreulem 15378 sqreu 15379 fsumshftm 15797 fsumcube 16076 eftlub 16127 summodnegmod 16306 shft2rab 25461 atandm2 26839 atandm4 26841 acosneg 26849 atanneg 26869 atancj 26872 atanlogadd 26876 atanlogsublem 26877 atanlogsub 26878 efiatan2 26879 2efiatan 26880 tanatan 26881 atans2 26893 dvatan 26897 atantayl 26899 wilthlem1 27030 wilthlem3 27032 wilthimp 27034 ftalem7 27041 ppiub 27167 2sqlem11 27392 2sqblem 27394 cos2h 37635 tan2h 37636 ftc1anclem5 37721 2pwp1prm 47603 |
| Copyright terms: Public domain | W3C validator |