Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omscl | Structured version Visualization version GIF version |
Description: A closure lemma for the constructed outer measure. (Contributed by Thierry Arnoux, 17-Sep-2019.) |
Ref | Expression |
---|---|
omscl | ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3412 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | simp2 1139 | . . . . . . 7 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → 𝑅:𝑄⟶(0[,]+∞)) | |
3 | 2 | ad2antrr 726 | . . . . . 6 ⊢ ((((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → 𝑅:𝑄⟶(0[,]+∞)) |
4 | ssrab2 3993 | . . . . . . . . . 10 ⊢ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ⊆ 𝒫 dom 𝑅 | |
5 | simpr 488 | . . . . . . . . . 10 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) | |
6 | 4, 5 | sseldi 3899 | . . . . . . . . 9 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → 𝑥 ∈ 𝒫 dom 𝑅) |
7 | fdm 6554 | . . . . . . . . . . . 12 ⊢ (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄) | |
8 | 7 | pweqd 4532 | . . . . . . . . . . 11 ⊢ (𝑅:𝑄⟶(0[,]+∞) → 𝒫 dom 𝑅 = 𝒫 𝑄) |
9 | 2, 8 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → 𝒫 dom 𝑅 = 𝒫 𝑄) |
10 | 9 | adantr 484 | . . . . . . . . 9 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → 𝒫 dom 𝑅 = 𝒫 𝑄) |
11 | 6, 10 | eleqtrd 2840 | . . . . . . . 8 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → 𝑥 ∈ 𝒫 𝑄) |
12 | elpwi 4522 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 𝑄 → 𝑥 ⊆ 𝑄) | |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → 𝑥 ⊆ 𝑄) |
14 | 13 | sselda 3901 | . . . . . 6 ⊢ ((((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑄) |
15 | 3, 14 | ffvelrnd 6905 | . . . . 5 ⊢ ((((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) ∧ 𝑦 ∈ 𝑥) → (𝑅‘𝑦) ∈ (0[,]+∞)) |
16 | 15 | ralrimiva 3105 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → ∀𝑦 ∈ 𝑥 (𝑅‘𝑦) ∈ (0[,]+∞)) |
17 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑦𝑥 | |
18 | 17 | esumcl 31710 | . . . 4 ⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝑅‘𝑦) ∈ (0[,]+∞)) → Σ*𝑦 ∈ 𝑥(𝑅‘𝑦) ∈ (0[,]+∞)) |
19 | 1, 16, 18 | sylancr 590 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) ∧ 𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}) → Σ*𝑦 ∈ 𝑥(𝑅‘𝑦) ∈ (0[,]+∞)) |
20 | 19 | ralrimiva 3105 | . 2 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → ∀𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}Σ*𝑦 ∈ 𝑥(𝑅‘𝑦) ∈ (0[,]+∞)) |
21 | eqid 2737 | . . 3 ⊢ (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) | |
22 | 21 | rnmptss 6939 | . 2 ⊢ (∀𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)}Σ*𝑦 ∈ 𝑥(𝑅‘𝑦) ∈ (0[,]+∞) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) |
23 | 20, 22 | syl 17 | 1 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 Vcvv 3408 ⊆ wss 3866 𝒫 cpw 4513 ∪ cuni 4819 class class class wbr 5053 ↦ cmpt 5135 dom cdm 5551 ran crn 5552 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ωcom 7644 ≼ cdom 8624 0cc0 10729 +∞cpnf 10864 [,]cicc 12938 Σ*cesum 31707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-xadd 12705 df-ioo 12939 df-ioc 12940 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-seq 13575 df-hash 13897 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-tset 16821 df-ple 16822 df-ds 16824 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-ordt 17006 df-xrs 17007 df-mre 17089 df-mrc 17090 df-acs 17092 df-ps 18072 df-tsr 18073 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-cntz 18711 df-cmn 19172 df-fbas 20360 df-fg 20361 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-ntr 21917 df-nei 21995 df-cn 22124 df-haus 22212 df-fil 22743 df-fm 22835 df-flim 22836 df-flf 22837 df-tsms 23024 df-esum 31708 |
This theorem is referenced by: omsf 31975 omssubaddlem 31978 omssubadd 31979 |
Copyright terms: Public domain | W3C validator |