|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartgtl | Structured version Visualization version GIF version | ||
| Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.) | 
| Ref | Expression | 
|---|---|
| iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | 
| Ref | Expression | 
|---|---|
| iccpartgtl | ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑖)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iccpartgtprec.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 2 | elnnuz 12923 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ≥‘1)) | |
| 3 | 1, 2 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘1)) | 
| 4 | fzisfzounsn 13819 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘1) → (1...𝑀) = ((1..^𝑀) ∪ {𝑀})) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (1...𝑀) = ((1..^𝑀) ∪ {𝑀})) | 
| 6 | 5 | eleq2d 2826 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ (1...𝑀) ↔ 𝑖 ∈ ((1..^𝑀) ∪ {𝑀}))) | 
| 7 | elun 4152 | . . . . 5 ⊢ (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀})) | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}))) | 
| 9 | velsn 4641 | . . . . . 6 ⊢ (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀) | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)) | 
| 11 | 10 | orbi2d 915 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀))) | 
| 12 | 6, 8, 11 | 3bitrd 305 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (1...𝑀) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀))) | 
| 13 | fveq2 6905 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) | |
| 14 | 13 | breq2d 5154 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → ((𝑃‘0) < (𝑃‘𝑘) ↔ (𝑃‘0) < (𝑃‘𝑖))) | 
| 15 | 14 | rspccv 3618 | . . . . . 6 ⊢ (∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑘) → (𝑖 ∈ (1..^𝑀) → (𝑃‘0) < (𝑃‘𝑖))) | 
| 16 | iccpartgtprec.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
| 17 | 1, 16 | iccpartigtl 47415 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑘)) | 
| 18 | 15, 17 | syl11 33 | . . . . 5 ⊢ (𝑖 ∈ (1..^𝑀) → (𝜑 → (𝑃‘0) < (𝑃‘𝑖))) | 
| 19 | 1, 16 | iccpartlt 47416 | . . . . . . . 8 ⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) | 
| 20 | 19 | adantl 481 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑀)) | 
| 21 | fveq2 6905 | . . . . . . . 8 ⊢ (𝑖 = 𝑀 → (𝑃‘𝑖) = (𝑃‘𝑀)) | |
| 22 | 21 | adantr 480 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑖) = (𝑃‘𝑀)) | 
| 23 | 20, 22 | breqtrrd 5170 | . . . . . 6 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑖)) | 
| 24 | 23 | ex 412 | . . . . 5 ⊢ (𝑖 = 𝑀 → (𝜑 → (𝑃‘0) < (𝑃‘𝑖))) | 
| 25 | 18, 24 | jaoi 857 | . . . 4 ⊢ ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃‘0) < (𝑃‘𝑖))) | 
| 26 | 25 | com12 32 | . . 3 ⊢ (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃‘0) < (𝑃‘𝑖))) | 
| 27 | 12, 26 | sylbid 240 | . 2 ⊢ (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃‘𝑖))) | 
| 28 | 27 | ralrimiv 3144 | 1 ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑖)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∪ cun 3948 {csn 4625 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 0cc0 11156 1c1 11157 < clt 11296 ℕcn 12267 ℤ≥cuz 12879 ...cfz 13548 ..^cfzo 13695 RePartciccp 47405 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-iccp 47406 | 
| This theorem is referenced by: iccpartgel 47421 | 
| Copyright terms: Public domain | W3C validator |