Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgtl Structured version   Visualization version   GIF version

Theorem iccpartgtl 47553
Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartgtl (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃𝑖))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartgtl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 elnnuz 12780 . . . . . . 7 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
31, 2sylib 218 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘1))
4 fzisfzounsn 13684 . . . . . 6 (𝑀 ∈ (ℤ‘1) → (1...𝑀) = ((1..^𝑀) ∪ {𝑀}))
53, 4syl 17 . . . . 5 (𝜑 → (1...𝑀) = ((1..^𝑀) ∪ {𝑀}))
65eleq2d 2819 . . . 4 (𝜑 → (𝑖 ∈ (1...𝑀) ↔ 𝑖 ∈ ((1..^𝑀) ∪ {𝑀})))
7 elun 4102 . . . . 5 (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}))
87a1i 11 . . . 4 (𝜑 → (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀})))
9 velsn 4593 . . . . . 6 (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)
109a1i 11 . . . . 5 (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀))
1110orbi2d 915 . . . 4 (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀)))
126, 8, 113bitrd 305 . . 3 (𝜑 → (𝑖 ∈ (1...𝑀) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀)))
13 fveq2 6830 . . . . . . . 8 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
1413breq2d 5107 . . . . . . 7 (𝑘 = 𝑖 → ((𝑃‘0) < (𝑃𝑘) ↔ (𝑃‘0) < (𝑃𝑖)))
1514rspccv 3570 . . . . . 6 (∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘) → (𝑖 ∈ (1..^𝑀) → (𝑃‘0) < (𝑃𝑖)))
16 iccpartgtprec.p . . . . . . 7 (𝜑𝑃 ∈ (RePart‘𝑀))
171, 16iccpartigtl 47550 . . . . . 6 (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘))
1815, 17syl11 33 . . . . 5 (𝑖 ∈ (1..^𝑀) → (𝜑 → (𝑃‘0) < (𝑃𝑖)))
191, 16iccpartlt 47551 . . . . . . . 8 (𝜑 → (𝑃‘0) < (𝑃𝑀))
2019adantl 481 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃‘0) < (𝑃𝑀))
21 fveq2 6830 . . . . . . . 8 (𝑖 = 𝑀 → (𝑃𝑖) = (𝑃𝑀))
2221adantr 480 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃𝑖) = (𝑃𝑀))
2320, 22breqtrrd 5123 . . . . . 6 ((𝑖 = 𝑀𝜑) → (𝑃‘0) < (𝑃𝑖))
2423ex 412 . . . . 5 (𝑖 = 𝑀 → (𝜑 → (𝑃‘0) < (𝑃𝑖)))
2518, 24jaoi 857 . . . 4 ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃‘0) < (𝑃𝑖)))
2625com12 32 . . 3 (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃‘0) < (𝑃𝑖)))
2712, 26sylbid 240 . 2 (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃𝑖)))
2827ralrimiv 3124 1 (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wral 3048  cun 3896  {csn 4577   class class class wbr 5095  cfv 6488  (class class class)co 7354  0cc0 11015  1c1 11016   < clt 11155  cn 12134  cuz 12740  ...cfz 13411  ..^cfzo 13558  RePartciccp 47540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-fzo 13559  df-iccp 47541
This theorem is referenced by:  iccpartgel  47556
  Copyright terms: Public domain W3C validator