| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartgtl | Structured version Visualization version GIF version | ||
| Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.) |
| Ref | Expression |
|---|---|
| iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
| Ref | Expression |
|---|---|
| iccpartgtl | ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑖)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpartgtprec.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 2 | elnnuz 12797 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ≥‘1)) | |
| 3 | 1, 2 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘1)) |
| 4 | fzisfzounsn 13700 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘1) → (1...𝑀) = ((1..^𝑀) ∪ {𝑀})) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (1...𝑀) = ((1..^𝑀) ∪ {𝑀})) |
| 6 | 5 | eleq2d 2814 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ (1...𝑀) ↔ 𝑖 ∈ ((1..^𝑀) ∪ {𝑀}))) |
| 7 | elun 4106 | . . . . 5 ⊢ (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀})) | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}))) |
| 9 | velsn 4595 | . . . . . 6 ⊢ (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀) | |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)) |
| 11 | 10 | orbi2d 915 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀))) |
| 12 | 6, 8, 11 | 3bitrd 305 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (1...𝑀) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀))) |
| 13 | fveq2 6826 | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) | |
| 14 | 13 | breq2d 5107 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → ((𝑃‘0) < (𝑃‘𝑘) ↔ (𝑃‘0) < (𝑃‘𝑖))) |
| 15 | 14 | rspccv 3576 | . . . . . 6 ⊢ (∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑘) → (𝑖 ∈ (1..^𝑀) → (𝑃‘0) < (𝑃‘𝑖))) |
| 16 | iccpartgtprec.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
| 17 | 1, 16 | iccpartigtl 47411 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃‘𝑘)) |
| 18 | 15, 17 | syl11 33 | . . . . 5 ⊢ (𝑖 ∈ (1..^𝑀) → (𝜑 → (𝑃‘0) < (𝑃‘𝑖))) |
| 19 | 1, 16 | iccpartlt 47412 | . . . . . . . 8 ⊢ (𝜑 → (𝑃‘0) < (𝑃‘𝑀)) |
| 20 | 19 | adantl 481 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑀)) |
| 21 | fveq2 6826 | . . . . . . . 8 ⊢ (𝑖 = 𝑀 → (𝑃‘𝑖) = (𝑃‘𝑀)) | |
| 22 | 21 | adantr 480 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑖) = (𝑃‘𝑀)) |
| 23 | 20, 22 | breqtrrd 5123 | . . . . . 6 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘0) < (𝑃‘𝑖)) |
| 24 | 23 | ex 412 | . . . . 5 ⊢ (𝑖 = 𝑀 → (𝜑 → (𝑃‘0) < (𝑃‘𝑖))) |
| 25 | 18, 24 | jaoi 857 | . . . 4 ⊢ ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃‘0) < (𝑃‘𝑖))) |
| 26 | 25 | com12 32 | . . 3 ⊢ (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃‘0) < (𝑃‘𝑖))) |
| 27 | 12, 26 | sylbid 240 | . 2 ⊢ (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃‘𝑖))) |
| 28 | 27 | ralrimiv 3120 | 1 ⊢ (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑖)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cun 3903 {csn 4579 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 < clt 11168 ℕcn 12146 ℤ≥cuz 12753 ...cfz 13428 ..^cfzo 13575 RePartciccp 47401 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-iccp 47402 |
| This theorem is referenced by: iccpartgel 47417 |
| Copyright terms: Public domain | W3C validator |