Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgtl Structured version   Visualization version   GIF version

Theorem iccpartgtl 44360
 Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartgtl (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃𝑖))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartgtl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 elnnuz 12335 . . . . . . 7 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
31, 2sylib 221 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘1))
4 fzisfzounsn 13211 . . . . . 6 (𝑀 ∈ (ℤ‘1) → (1...𝑀) = ((1..^𝑀) ∪ {𝑀}))
53, 4syl 17 . . . . 5 (𝜑 → (1...𝑀) = ((1..^𝑀) ∪ {𝑀}))
65eleq2d 2837 . . . 4 (𝜑 → (𝑖 ∈ (1...𝑀) ↔ 𝑖 ∈ ((1..^𝑀) ∪ {𝑀})))
7 elun 4056 . . . . 5 (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}))
87a1i 11 . . . 4 (𝜑 → (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀})))
9 velsn 4541 . . . . . 6 (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)
109a1i 11 . . . . 5 (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀))
1110orbi2d 913 . . . 4 (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀)))
126, 8, 113bitrd 308 . . 3 (𝜑 → (𝑖 ∈ (1...𝑀) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀)))
13 fveq2 6663 . . . . . . . 8 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
1413breq2d 5048 . . . . . . 7 (𝑘 = 𝑖 → ((𝑃‘0) < (𝑃𝑘) ↔ (𝑃‘0) < (𝑃𝑖)))
1514rspccv 3540 . . . . . 6 (∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘) → (𝑖 ∈ (1..^𝑀) → (𝑃‘0) < (𝑃𝑖)))
16 iccpartgtprec.p . . . . . . 7 (𝜑𝑃 ∈ (RePart‘𝑀))
171, 16iccpartigtl 44357 . . . . . 6 (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘))
1815, 17syl11 33 . . . . 5 (𝑖 ∈ (1..^𝑀) → (𝜑 → (𝑃‘0) < (𝑃𝑖)))
191, 16iccpartlt 44358 . . . . . . . 8 (𝜑 → (𝑃‘0) < (𝑃𝑀))
2019adantl 485 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃‘0) < (𝑃𝑀))
21 fveq2 6663 . . . . . . . 8 (𝑖 = 𝑀 → (𝑃𝑖) = (𝑃𝑀))
2221adantr 484 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃𝑖) = (𝑃𝑀))
2320, 22breqtrrd 5064 . . . . . 6 ((𝑖 = 𝑀𝜑) → (𝑃‘0) < (𝑃𝑖))
2423ex 416 . . . . 5 (𝑖 = 𝑀 → (𝜑 → (𝑃‘0) < (𝑃𝑖)))
2518, 24jaoi 854 . . . 4 ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃‘0) < (𝑃𝑖)))
2625com12 32 . . 3 (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃‘0) < (𝑃𝑖)))
2712, 26sylbid 243 . 2 (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃𝑖)))
2827ralrimiv 3112 1 (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃𝑖))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111  ∀wral 3070   ∪ cun 3858  {csn 4525   class class class wbr 5036  ‘cfv 6340  (class class class)co 7156  0cc0 10588  1c1 10589   < clt 10726  ℕcn 11687  ℤ≥cuz 12295  ...cfz 12952  ..^cfzo 13095  RePartciccp 44347 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-fzo 13096  df-iccp 44348 This theorem is referenced by:  iccpartgel  44363
 Copyright terms: Public domain W3C validator