Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgtl Structured version   Visualization version   GIF version

Theorem iccpartgtl 47400
Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartgtl (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃𝑖))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartgtl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 elnnuz 12813 . . . . . . 7 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
31, 2sylib 218 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘1))
4 fzisfzounsn 13716 . . . . . 6 (𝑀 ∈ (ℤ‘1) → (1...𝑀) = ((1..^𝑀) ∪ {𝑀}))
53, 4syl 17 . . . . 5 (𝜑 → (1...𝑀) = ((1..^𝑀) ∪ {𝑀}))
65eleq2d 2814 . . . 4 (𝜑 → (𝑖 ∈ (1...𝑀) ↔ 𝑖 ∈ ((1..^𝑀) ∪ {𝑀})))
7 elun 4112 . . . . 5 (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}))
87a1i 11 . . . 4 (𝜑 → (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀})))
9 velsn 4601 . . . . . 6 (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)
109a1i 11 . . . . 5 (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀))
1110orbi2d 915 . . . 4 (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀)))
126, 8, 113bitrd 305 . . 3 (𝜑 → (𝑖 ∈ (1...𝑀) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀)))
13 fveq2 6840 . . . . . . . 8 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
1413breq2d 5114 . . . . . . 7 (𝑘 = 𝑖 → ((𝑃‘0) < (𝑃𝑘) ↔ (𝑃‘0) < (𝑃𝑖)))
1514rspccv 3582 . . . . . 6 (∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘) → (𝑖 ∈ (1..^𝑀) → (𝑃‘0) < (𝑃𝑖)))
16 iccpartgtprec.p . . . . . . 7 (𝜑𝑃 ∈ (RePart‘𝑀))
171, 16iccpartigtl 47397 . . . . . 6 (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘))
1815, 17syl11 33 . . . . 5 (𝑖 ∈ (1..^𝑀) → (𝜑 → (𝑃‘0) < (𝑃𝑖)))
191, 16iccpartlt 47398 . . . . . . . 8 (𝜑 → (𝑃‘0) < (𝑃𝑀))
2019adantl 481 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃‘0) < (𝑃𝑀))
21 fveq2 6840 . . . . . . . 8 (𝑖 = 𝑀 → (𝑃𝑖) = (𝑃𝑀))
2221adantr 480 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃𝑖) = (𝑃𝑀))
2320, 22breqtrrd 5130 . . . . . 6 ((𝑖 = 𝑀𝜑) → (𝑃‘0) < (𝑃𝑖))
2423ex 412 . . . . 5 (𝑖 = 𝑀 → (𝜑 → (𝑃‘0) < (𝑃𝑖)))
2518, 24jaoi 857 . . . 4 ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃‘0) < (𝑃𝑖)))
2625com12 32 . . 3 (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃‘0) < (𝑃𝑖)))
2712, 26sylbid 240 . 2 (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃𝑖)))
2827ralrimiv 3124 1 (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cun 3909  {csn 4585   class class class wbr 5102  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   < clt 11184  cn 12162  cuz 12769  ...cfz 13444  ..^cfzo 13591  RePartciccp 47387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-iccp 47388
This theorem is referenced by:  iccpartgel  47403
  Copyright terms: Public domain W3C validator