MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzm1 Structured version   Visualization version   GIF version

Theorem fzm1 13510
Description: Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzm1 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))

Proof of Theorem fzm1
StepHypRef Expression
1 oveq1 7356 . . . . . . 7 (𝑁 = 𝑀 → (𝑁...𝑁) = (𝑀...𝑁))
21eleq2d 2814 . . . . . 6 (𝑁 = 𝑀 → (𝐾 ∈ (𝑁...𝑁) ↔ 𝐾 ∈ (𝑀...𝑁)))
3 elfz1eq 13438 . . . . . 6 (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)
42, 3biimtrrdi 254 . . . . 5 (𝑁 = 𝑀 → (𝐾 ∈ (𝑀...𝑁) → 𝐾 = 𝑁))
5 olc 868 . . . . 5 (𝐾 = 𝑁 → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))
64, 5syl6 35 . . . 4 (𝑁 = 𝑀 → (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
76adantl 481 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
8 noel 4289 . . . . . 6 ¬ 𝐾 ∈ ∅
9 eluzelz 12745 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
109adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝑁 ∈ ℤ)
1110zred 12580 . . . . . . . . . 10 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝑁 ∈ ℝ)
1211ltm1d 12057 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) < 𝑁)
13 breq2 5096 . . . . . . . . . 10 (𝑁 = 𝑀 → ((𝑁 − 1) < 𝑁 ↔ (𝑁 − 1) < 𝑀))
1413adantl 481 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ((𝑁 − 1) < 𝑁 ↔ (𝑁 − 1) < 𝑀))
1512, 14mpbid 232 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) < 𝑀)
16 eluzel2 12740 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
17 1zzd 12506 . . . . . . . . . 10 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 1 ∈ ℤ)
1810, 17zsubcld 12585 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) ∈ ℤ)
19 fzn 13443 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) < 𝑀 ↔ (𝑀...(𝑁 − 1)) = ∅))
2016, 18, 19syl2an2r 685 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ((𝑁 − 1) < 𝑀 ↔ (𝑀...(𝑁 − 1)) = ∅))
2115, 20mpbid 232 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑀...(𝑁 − 1)) = ∅)
2221eleq2d 2814 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ 𝐾 ∈ ∅))
238, 22mtbiri 327 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1)))
2423pm2.21d 121 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 ∈ (𝑀...𝑁)))
25 eluzfz2 13435 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2625ad2antrr 726 . . . . . 6 (((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → 𝑁 ∈ (𝑀...𝑁))
27 eleq1 2816 . . . . . . 7 (𝐾 = 𝑁 → (𝐾 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
2827adantl 481 . . . . . 6 (((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
2926, 28mpbird 257 . . . . 5 (((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → 𝐾 ∈ (𝑀...𝑁))
3029ex 412 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 = 𝑁𝐾 ∈ (𝑀...𝑁)))
3124, 30jaod 859 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ((𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁) → 𝐾 ∈ (𝑀...𝑁)))
327, 31impbid 212 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
33 elfzp1 13477 . . . 4 ((𝑁 − 1) ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1))))
3433adantl 481 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1))))
359adantr 480 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
3635zcnd 12581 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
37 npcan1 11545 . . . . . 6 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
3836, 37syl 17 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((𝑁 − 1) + 1) = 𝑁)
3938oveq2d 7365 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
4039eleq2d 2814 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ 𝐾 ∈ (𝑀...𝑁)))
4138eqeq2d 2740 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 = ((𝑁 − 1) + 1) ↔ 𝐾 = 𝑁))
4241orbi2d 915 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
4334, 40, 423bitr3d 309 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
44 uzm1 12773 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
4532, 43, 44mpjaodan 960 1 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  c0 4284   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  1c1 11010   + caddc 11012   < clt 11149  cmin 11347  cz 12471  cuz 12735  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411
This theorem is referenced by:  bcpasc  14228  phibndlem  16681  lgsdir2lem2  27235  submateqlem2  33775  poimirlem14  37618  poimirlem23  37627  poimirlem25  37629  poimirlem27  37631  acongeq  42960  jm2.26lem3  42978
  Copyright terms: Public domain W3C validator