Proof of Theorem fzm1
Step | Hyp | Ref
| Expression |
1 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑁 = 𝑀 → (𝑁...𝑁) = (𝑀...𝑁)) |
2 | 1 | eleq2d 2824 |
. . . . . 6
⊢ (𝑁 = 𝑀 → (𝐾 ∈ (𝑁...𝑁) ↔ 𝐾 ∈ (𝑀...𝑁))) |
3 | | elfz1eq 13267 |
. . . . . 6
⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) |
4 | 2, 3 | syl6bir 253 |
. . . . 5
⊢ (𝑁 = 𝑀 → (𝐾 ∈ (𝑀...𝑁) → 𝐾 = 𝑁)) |
5 | | olc 865 |
. . . . 5
⊢ (𝐾 = 𝑁 → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)) |
6 | 4, 5 | syl6 35 |
. . . 4
⊢ (𝑁 = 𝑀 → (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))) |
7 | 6 | adantl 482 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))) |
8 | | noel 4264 |
. . . . . 6
⊢ ¬
𝐾 ∈
∅ |
9 | | eluzelz 12592 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
10 | 9 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → 𝑁 ∈ ℤ) |
11 | 10 | zred 12426 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → 𝑁 ∈ ℝ) |
12 | 11 | ltm1d 11907 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) < 𝑁) |
13 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑁 = 𝑀 → ((𝑁 − 1) < 𝑁 ↔ (𝑁 − 1) < 𝑀)) |
14 | 13 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → ((𝑁 − 1) < 𝑁 ↔ (𝑁 − 1) < 𝑀)) |
15 | 12, 14 | mpbid 231 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) < 𝑀) |
16 | | eluzel2 12587 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
17 | | 1zzd 12351 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → 1 ∈ ℤ) |
18 | 10, 17 | zsubcld 12431 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) ∈ ℤ) |
19 | | fzn 13272 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ)
→ ((𝑁 − 1) <
𝑀 ↔ (𝑀...(𝑁 − 1)) = ∅)) |
20 | 16, 18, 19 | syl2an2r 682 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → ((𝑁 − 1) < 𝑀 ↔ (𝑀...(𝑁 − 1)) = ∅)) |
21 | 15, 20 | mpbid 231 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → (𝑀...(𝑁 − 1)) = ∅) |
22 | 21 | eleq2d 2824 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ 𝐾 ∈ ∅)) |
23 | 8, 22 | mtbiri 327 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1))) |
24 | 23 | pm2.21d 121 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 ∈ (𝑀...𝑁))) |
25 | | eluzfz2 13264 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
26 | 25 | ad2antrr 723 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → 𝑁 ∈ (𝑀...𝑁)) |
27 | | eleq1 2826 |
. . . . . . 7
⊢ (𝐾 = 𝑁 → (𝐾 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁))) |
28 | 27 | adantl 482 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁))) |
29 | 26, 28 | mpbird 256 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → 𝐾 ∈ (𝑀...𝑁)) |
30 | 29 | ex 413 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → (𝐾 = 𝑁 → 𝐾 ∈ (𝑀...𝑁))) |
31 | 24, 30 | jaod 856 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → ((𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁) → 𝐾 ∈ (𝑀...𝑁))) |
32 | 7, 31 | impbid 211 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))) |
33 | | elfzp1 13306 |
. . . 4
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1)))) |
34 | 33 | adantl 482 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1)))) |
35 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
36 | 35 | zcnd 12427 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) → 𝑁 ∈ ℂ) |
37 | | npcan1 11400 |
. . . . . 6
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
38 | 36, 37 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) → ((𝑁 − 1) + 1) = 𝑁) |
39 | 38 | oveq2d 7291 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
40 | 39 | eleq2d 2824 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ 𝐾 ∈ (𝑀...𝑁))) |
41 | 38 | eqeq2d 2749 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) → (𝐾 = ((𝑁 − 1) + 1) ↔ 𝐾 = 𝑁)) |
42 | 41 | orbi2d 913 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) → ((𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))) |
43 | 34, 40, 42 | 3bitr3d 309 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑀)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))) |
44 | | uzm1 12616 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈
(ℤ≥‘𝑀))) |
45 | 32, 43, 44 | mpjaodan 956 |
1
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))) |