MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzm1 Structured version   Visualization version   GIF version

Theorem fzm1 13507
Description: Choices for an element of a finite interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzm1 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))

Proof of Theorem fzm1
StepHypRef Expression
1 oveq1 7353 . . . . . . 7 (𝑁 = 𝑀 → (𝑁...𝑁) = (𝑀...𝑁))
21eleq2d 2817 . . . . . 6 (𝑁 = 𝑀 → (𝐾 ∈ (𝑁...𝑁) ↔ 𝐾 ∈ (𝑀...𝑁)))
3 elfz1eq 13435 . . . . . 6 (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)
42, 3biimtrrdi 254 . . . . 5 (𝑁 = 𝑀 → (𝐾 ∈ (𝑀...𝑁) → 𝐾 = 𝑁))
5 olc 868 . . . . 5 (𝐾 = 𝑁 → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁))
64, 5syl6 35 . . . 4 (𝑁 = 𝑀 → (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
76adantl 481 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...𝑁) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
8 noel 4285 . . . . . 6 ¬ 𝐾 ∈ ∅
9 eluzelz 12742 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
109adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝑁 ∈ ℤ)
1110zred 12577 . . . . . . . . . 10 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 𝑁 ∈ ℝ)
1211ltm1d 12054 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) < 𝑁)
13 breq2 5093 . . . . . . . . . 10 (𝑁 = 𝑀 → ((𝑁 − 1) < 𝑁 ↔ (𝑁 − 1) < 𝑀))
1413adantl 481 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ((𝑁 − 1) < 𝑁 ↔ (𝑁 − 1) < 𝑀))
1512, 14mpbid 232 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) < 𝑀)
16 eluzel2 12737 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
17 1zzd 12503 . . . . . . . . . 10 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → 1 ∈ ℤ)
1810, 17zsubcld 12582 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑁 − 1) ∈ ℤ)
19 fzn 13440 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) < 𝑀 ↔ (𝑀...(𝑁 − 1)) = ∅))
2016, 18, 19syl2an2r 685 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ((𝑁 − 1) < 𝑀 ↔ (𝑀...(𝑁 − 1)) = ∅))
2115, 20mpbid 232 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝑀...(𝑁 − 1)) = ∅)
2221eleq2d 2817 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...(𝑁 − 1)) ↔ 𝐾 ∈ ∅))
238, 22mtbiri 327 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ¬ 𝐾 ∈ (𝑀...(𝑁 − 1)))
2423pm2.21d 121 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 ∈ (𝑀...𝑁)))
25 eluzfz2 13432 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2625ad2antrr 726 . . . . . 6 (((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → 𝑁 ∈ (𝑀...𝑁))
27 eleq1 2819 . . . . . . 7 (𝐾 = 𝑁 → (𝐾 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
2827adantl 481 . . . . . 6 (((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
2926, 28mpbird 257 . . . . 5 (((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) ∧ 𝐾 = 𝑁) → 𝐾 ∈ (𝑀...𝑁))
3029ex 412 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 = 𝑁𝐾 ∈ (𝑀...𝑁)))
3124, 30jaod 859 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → ((𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁) → 𝐾 ∈ (𝑀...𝑁)))
327, 31impbid 212 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑁 = 𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
33 elfzp1 13474 . . . 4 ((𝑁 − 1) ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1))))
3433adantl 481 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1))))
359adantr 480 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
3635zcnd 12578 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → 𝑁 ∈ ℂ)
37 npcan1 11542 . . . . . 6 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
3836, 37syl 17 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((𝑁 − 1) + 1) = 𝑁)
3938oveq2d 7362 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
4039eleq2d 2817 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 ∈ (𝑀...((𝑁 − 1) + 1)) ↔ 𝐾 ∈ (𝑀...𝑁)))
4138eqeq2d 2742 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 = ((𝑁 − 1) + 1) ↔ 𝐾 = 𝑁))
4241orbi2d 915 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → ((𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = ((𝑁 − 1) + 1)) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
4334, 40, 423bitr3d 309 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑀)) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
44 uzm1 12770 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ𝑀)))
4532, 43, 44mpjaodan 960 1 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (𝑀...(𝑁 − 1)) ∨ 𝐾 = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  c0 4280   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  1c1 11007   + caddc 11009   < clt 11146  cmin 11344  cz 12468  cuz 12732  ...cfz 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408
This theorem is referenced by:  bcpasc  14228  phibndlem  16681  lgsdir2lem2  27264  submateqlem2  33821  poimirlem14  37684  poimirlem23  37693  poimirlem25  37695  poimirlem27  37697  acongeq  43086  jm2.26lem3  43104
  Copyright terms: Public domain W3C validator