MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcvg Structured version   Visualization version   GIF version

Theorem fsumcvg 15602
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 0))
summo.2 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
sumrb.3 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
fsumcvg.4 (πœ‘ β†’ 𝐴 βŠ† (𝑀...𝑁))
Assertion
Ref Expression
fsumcvg (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)β€˜π‘))
Distinct variable groups:   𝐴,π‘˜   π‘˜,𝐹   π‘˜,𝑁   πœ‘,π‘˜   π‘˜,𝑀
Allowed substitution hint:   𝐡(π‘˜)

Proof of Theorem fsumcvg
Dummy variables π‘š 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (β„€β‰₯β€˜π‘) = (β„€β‰₯β€˜π‘)
2 sumrb.3 . . 3 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
3 eluzelz 12778 . . 3 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑁 ∈ β„€)
42, 3syl 17 . 2 (πœ‘ β†’ 𝑁 ∈ β„€)
5 seqex 13914 . . 3 seq𝑀( + , 𝐹) ∈ V
65a1i 11 . 2 (πœ‘ β†’ seq𝑀( + , 𝐹) ∈ V)
7 eqid 2733 . . . 4 (β„€β‰₯β€˜π‘€) = (β„€β‰₯β€˜π‘€)
8 eluzel2 12773 . . . . 5 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑀 ∈ β„€)
92, 8syl 17 . . . 4 (πœ‘ β†’ 𝑀 ∈ β„€)
10 eluzelz 12778 . . . . . 6 (π‘˜ ∈ (β„€β‰₯β€˜π‘€) β†’ π‘˜ ∈ β„€)
11 iftrue 4493 . . . . . . . . . 10 (π‘˜ ∈ 𝐴 β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) = 𝐡)
1211adantl 483 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) = 𝐡)
13 summo.2 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
1412, 13eqeltrd 2834 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚)
1514ex 414 . . . . . . 7 (πœ‘ β†’ (π‘˜ ∈ 𝐴 β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚))
16 iffalse 4496 . . . . . . . 8 (Β¬ π‘˜ ∈ 𝐴 β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) = 0)
17 0cn 11152 . . . . . . . 8 0 ∈ β„‚
1816, 17eqeltrdi 2842 . . . . . . 7 (Β¬ π‘˜ ∈ 𝐴 β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚)
1915, 18pm2.61d1 180 . . . . . 6 (πœ‘ β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚)
20 summo.1 . . . . . . 7 𝐹 = (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 0))
2120fvmpt2 6960 . . . . . 6 ((π‘˜ ∈ β„€ ∧ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚) β†’ (πΉβ€˜π‘˜) = if(π‘˜ ∈ 𝐴, 𝐡, 0))
2210, 19, 21syl2anr 598 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) = if(π‘˜ ∈ 𝐴, 𝐡, 0))
2319adantr 482 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚)
2422, 23eqeltrd 2834 . . . 4 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
257, 9, 24serf 13942 . . 3 (πœ‘ β†’ seq𝑀( + , 𝐹):(β„€β‰₯β€˜π‘€)βŸΆβ„‚)
2625, 2ffvelcdmd 7037 . 2 (πœ‘ β†’ (seq𝑀( + , 𝐹)β€˜π‘) ∈ β„‚)
27 addid1 11340 . . . . 5 (π‘š ∈ β„‚ β†’ (π‘š + 0) = π‘š)
2827adantl 483 . . . 4 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) ∧ π‘š ∈ β„‚) β†’ (π‘š + 0) = π‘š)
292adantr 482 . . . 4 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
30 simpr 486 . . . 4 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘))
3126adantr 482 . . . 4 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (seq𝑀( + , 𝐹)β€˜π‘) ∈ β„‚)
32 elfzuz 13443 . . . . . 6 (π‘š ∈ ((𝑁 + 1)...𝑛) β†’ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1)))
33 eluzelz 12778 . . . . . . . . 9 (π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ π‘š ∈ β„€)
3433adantl 483 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ π‘š ∈ β„€)
35 fsumcvg.4 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐴 βŠ† (𝑀...𝑁))
3635sseld 3944 . . . . . . . . . . 11 (πœ‘ β†’ (π‘š ∈ 𝐴 β†’ π‘š ∈ (𝑀...𝑁)))
37 fznuz 13529 . . . . . . . . . . 11 (π‘š ∈ (𝑀...𝑁) β†’ Β¬ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1)))
3836, 37syl6 35 . . . . . . . . . 10 (πœ‘ β†’ (π‘š ∈ 𝐴 β†’ Β¬ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))))
3938con2d 134 . . . . . . . . 9 (πœ‘ β†’ (π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ Β¬ π‘š ∈ 𝐴))
4039imp 408 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ Β¬ π‘š ∈ 𝐴)
4134, 40eldifd 3922 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ π‘š ∈ (β„€ βˆ– 𝐴))
42 fveqeq2 6852 . . . . . . . 8 (π‘˜ = π‘š β†’ ((πΉβ€˜π‘˜) = 0 ↔ (πΉβ€˜π‘š) = 0))
43 eldifi 4087 . . . . . . . . . 10 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ π‘˜ ∈ β„€)
44 eldifn 4088 . . . . . . . . . . . 12 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ Β¬ π‘˜ ∈ 𝐴)
4544, 16syl 17 . . . . . . . . . . 11 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) = 0)
4645, 17eqeltrdi 2842 . . . . . . . . . 10 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚)
4743, 46, 21syl2anc 585 . . . . . . . . 9 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ (πΉβ€˜π‘˜) = if(π‘˜ ∈ 𝐴, 𝐡, 0))
4847, 45eqtrd 2773 . . . . . . . 8 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ (πΉβ€˜π‘˜) = 0)
4942, 48vtoclga 3533 . . . . . . 7 (π‘š ∈ (β„€ βˆ– 𝐴) β†’ (πΉβ€˜π‘š) = 0)
5041, 49syl 17 . . . . . 6 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (πΉβ€˜π‘š) = 0)
5132, 50sylan2 594 . . . . 5 ((πœ‘ ∧ π‘š ∈ ((𝑁 + 1)...𝑛)) β†’ (πΉβ€˜π‘š) = 0)
5251adantlr 714 . . . 4 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) ∧ π‘š ∈ ((𝑁 + 1)...𝑛)) β†’ (πΉβ€˜π‘š) = 0)
5328, 29, 30, 31, 52seqid2 13960 . . 3 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (seq𝑀( + , 𝐹)β€˜π‘) = (seq𝑀( + , 𝐹)β€˜π‘›))
5453eqcomd 2739 . 2 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (seq𝑀( + , 𝐹)β€˜π‘›) = (seq𝑀( + , 𝐹)β€˜π‘))
551, 4, 6, 26, 54climconst 15431 1 (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)β€˜π‘))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3444   βˆ– cdif 3908   βŠ† wss 3911  ifcif 4487   class class class wbr 5106   ↦ cmpt 5189  β€˜cfv 6497  (class class class)co 7358  β„‚cc 11054  0cc0 11056  1c1 11057   + caddc 11059  β„€cz 12504  β„€β‰₯cuz 12768  ...cfz 13430  seqcseq 13912   ⇝ cli 15372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-n0 12419  df-z 12505  df-uz 12769  df-rp 12921  df-fz 13431  df-seq 13913  df-exp 13974  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-clim 15376
This theorem is referenced by:  summolem2a  15605  fsumcvg2  15617
  Copyright terms: Public domain W3C validator