MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcvg Structured version   Visualization version   GIF version

Theorem fsumcvg 15654
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 0))
summo.2 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
sumrb.3 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
fsumcvg.4 (πœ‘ β†’ 𝐴 βŠ† (𝑀...𝑁))
Assertion
Ref Expression
fsumcvg (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)β€˜π‘))
Distinct variable groups:   𝐴,π‘˜   π‘˜,𝐹   π‘˜,𝑁   πœ‘,π‘˜   π‘˜,𝑀
Allowed substitution hint:   𝐡(π‘˜)

Proof of Theorem fsumcvg
Dummy variables π‘š 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . 2 (β„€β‰₯β€˜π‘) = (β„€β‰₯β€˜π‘)
2 sumrb.3 . . 3 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
3 eluzelz 12828 . . 3 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑁 ∈ β„€)
42, 3syl 17 . 2 (πœ‘ β†’ 𝑁 ∈ β„€)
5 seqex 13964 . . 3 seq𝑀( + , 𝐹) ∈ V
65a1i 11 . 2 (πœ‘ β†’ seq𝑀( + , 𝐹) ∈ V)
7 eqid 2732 . . . 4 (β„€β‰₯β€˜π‘€) = (β„€β‰₯β€˜π‘€)
8 eluzel2 12823 . . . . 5 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑀 ∈ β„€)
92, 8syl 17 . . . 4 (πœ‘ β†’ 𝑀 ∈ β„€)
10 eluzelz 12828 . . . . . 6 (π‘˜ ∈ (β„€β‰₯β€˜π‘€) β†’ π‘˜ ∈ β„€)
11 iftrue 4533 . . . . . . . . . 10 (π‘˜ ∈ 𝐴 β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) = 𝐡)
1211adantl 482 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) = 𝐡)
13 summo.2 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
1412, 13eqeltrd 2833 . . . . . . . 8 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚)
1514ex 413 . . . . . . 7 (πœ‘ β†’ (π‘˜ ∈ 𝐴 β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚))
16 iffalse 4536 . . . . . . . 8 (Β¬ π‘˜ ∈ 𝐴 β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) = 0)
17 0cn 11202 . . . . . . . 8 0 ∈ β„‚
1816, 17eqeltrdi 2841 . . . . . . 7 (Β¬ π‘˜ ∈ 𝐴 β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚)
1915, 18pm2.61d1 180 . . . . . 6 (πœ‘ β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚)
20 summo.1 . . . . . . 7 𝐹 = (π‘˜ ∈ β„€ ↦ if(π‘˜ ∈ 𝐴, 𝐡, 0))
2120fvmpt2 7006 . . . . . 6 ((π‘˜ ∈ β„€ ∧ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚) β†’ (πΉβ€˜π‘˜) = if(π‘˜ ∈ 𝐴, 𝐡, 0))
2210, 19, 21syl2anr 597 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) = if(π‘˜ ∈ 𝐴, 𝐡, 0))
2319adantr 481 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚)
2422, 23eqeltrd 2833 . . . 4 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
257, 9, 24serf 13992 . . 3 (πœ‘ β†’ seq𝑀( + , 𝐹):(β„€β‰₯β€˜π‘€)βŸΆβ„‚)
2625, 2ffvelcdmd 7084 . 2 (πœ‘ β†’ (seq𝑀( + , 𝐹)β€˜π‘) ∈ β„‚)
27 addrid 11390 . . . . 5 (π‘š ∈ β„‚ β†’ (π‘š + 0) = π‘š)
2827adantl 482 . . . 4 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) ∧ π‘š ∈ β„‚) β†’ (π‘š + 0) = π‘š)
292adantr 481 . . . 4 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
30 simpr 485 . . . 4 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘))
3126adantr 481 . . . 4 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (seq𝑀( + , 𝐹)β€˜π‘) ∈ β„‚)
32 elfzuz 13493 . . . . . 6 (π‘š ∈ ((𝑁 + 1)...𝑛) β†’ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1)))
33 eluzelz 12828 . . . . . . . . 9 (π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ π‘š ∈ β„€)
3433adantl 482 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ π‘š ∈ β„€)
35 fsumcvg.4 . . . . . . . . . . . 12 (πœ‘ β†’ 𝐴 βŠ† (𝑀...𝑁))
3635sseld 3980 . . . . . . . . . . 11 (πœ‘ β†’ (π‘š ∈ 𝐴 β†’ π‘š ∈ (𝑀...𝑁)))
37 fznuz 13579 . . . . . . . . . . 11 (π‘š ∈ (𝑀...𝑁) β†’ Β¬ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1)))
3836, 37syl6 35 . . . . . . . . . 10 (πœ‘ β†’ (π‘š ∈ 𝐴 β†’ Β¬ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))))
3938con2d 134 . . . . . . . . 9 (πœ‘ β†’ (π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1)) β†’ Β¬ π‘š ∈ 𝐴))
4039imp 407 . . . . . . . 8 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ Β¬ π‘š ∈ 𝐴)
4134, 40eldifd 3958 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ π‘š ∈ (β„€ βˆ– 𝐴))
42 fveqeq2 6897 . . . . . . . 8 (π‘˜ = π‘š β†’ ((πΉβ€˜π‘˜) = 0 ↔ (πΉβ€˜π‘š) = 0))
43 eldifi 4125 . . . . . . . . . 10 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ π‘˜ ∈ β„€)
44 eldifn 4126 . . . . . . . . . . . 12 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ Β¬ π‘˜ ∈ 𝐴)
4544, 16syl 17 . . . . . . . . . . 11 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) = 0)
4645, 17eqeltrdi 2841 . . . . . . . . . 10 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ if(π‘˜ ∈ 𝐴, 𝐡, 0) ∈ β„‚)
4743, 46, 21syl2anc 584 . . . . . . . . 9 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ (πΉβ€˜π‘˜) = if(π‘˜ ∈ 𝐴, 𝐡, 0))
4847, 45eqtrd 2772 . . . . . . . 8 (π‘˜ ∈ (β„€ βˆ– 𝐴) β†’ (πΉβ€˜π‘˜) = 0)
4942, 48vtoclga 3565 . . . . . . 7 (π‘š ∈ (β„€ βˆ– 𝐴) β†’ (πΉβ€˜π‘š) = 0)
5041, 49syl 17 . . . . . 6 ((πœ‘ ∧ π‘š ∈ (β„€β‰₯β€˜(𝑁 + 1))) β†’ (πΉβ€˜π‘š) = 0)
5132, 50sylan2 593 . . . . 5 ((πœ‘ ∧ π‘š ∈ ((𝑁 + 1)...𝑛)) β†’ (πΉβ€˜π‘š) = 0)
5251adantlr 713 . . . 4 (((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) ∧ π‘š ∈ ((𝑁 + 1)...𝑛)) β†’ (πΉβ€˜π‘š) = 0)
5328, 29, 30, 31, 52seqid2 14010 . . 3 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (seq𝑀( + , 𝐹)β€˜π‘) = (seq𝑀( + , 𝐹)β€˜π‘›))
5453eqcomd 2738 . 2 ((πœ‘ ∧ 𝑛 ∈ (β„€β‰₯β€˜π‘)) β†’ (seq𝑀( + , 𝐹)β€˜π‘›) = (seq𝑀( + , 𝐹)β€˜π‘))
551, 4, 6, 26, 54climconst 15483 1 (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)β€˜π‘))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βˆ– cdif 3944   βŠ† wss 3947  ifcif 4527   class class class wbr 5147   ↦ cmpt 5230  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104  0cc0 11106  1c1 11107   + caddc 11109  β„€cz 12554  β„€β‰₯cuz 12818  ...cfz 13480  seqcseq 13962   ⇝ cli 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428
This theorem is referenced by:  summolem2a  15657  fsumcvg2  15669
  Copyright terms: Public domain W3C validator