![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtrdifwrdellem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for pmtrdifwrdel 18214. (Contributed by AV, 15-Jan-2019.) |
Ref | Expression |
---|---|
pmtrdifel.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
pmtrdifel.r | ⊢ 𝑅 = ran (pmTrsp‘𝑁) |
pmtrdifwrdel.0 | ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) |
Ref | Expression |
---|---|
pmtrdifwrdellem2 | ⊢ (𝑊 ∈ Word 𝑇 → (♯‘𝑊) = (♯‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrdsymbcl 13543 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝑊‘𝑥) ∈ 𝑇) | |
2 | pmtrdifel.t | . . . . . 6 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
3 | pmtrdifel.r | . . . . . 6 ⊢ 𝑅 = ran (pmTrsp‘𝑁) | |
4 | eqid 2797 | . . . . . 6 ⊢ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I )) | |
5 | 2, 3, 4 | pmtrdifellem1 18205 | . . . . 5 ⊢ ((𝑊‘𝑥) ∈ 𝑇 → ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I )) ∈ 𝑅) |
6 | 1, 5 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑇 ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I )) ∈ 𝑅) |
7 | 6 | ralrimiva 3145 | . . 3 ⊢ (𝑊 ∈ Word 𝑇 → ∀𝑥 ∈ (0..^(♯‘𝑊))((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I )) ∈ 𝑅) |
8 | pmtrdifwrdel.0 | . . . 4 ⊢ 𝑈 = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I ))) | |
9 | 8 | fnmpt 6229 | . . 3 ⊢ (∀𝑥 ∈ (0..^(♯‘𝑊))((pmTrsp‘𝑁)‘dom ((𝑊‘𝑥) ∖ I )) ∈ 𝑅 → 𝑈 Fn (0..^(♯‘𝑊))) |
10 | hashfn 13410 | . . 3 ⊢ (𝑈 Fn (0..^(♯‘𝑊)) → (♯‘𝑈) = (♯‘(0..^(♯‘𝑊)))) | |
11 | 7, 9, 10 | 3syl 18 | . 2 ⊢ (𝑊 ∈ Word 𝑇 → (♯‘𝑈) = (♯‘(0..^(♯‘𝑊)))) |
12 | lencl 13549 | . . 3 ⊢ (𝑊 ∈ Word 𝑇 → (♯‘𝑊) ∈ ℕ0) | |
13 | hashfzo0 13462 | . . 3 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝑊 ∈ Word 𝑇 → (♯‘(0..^(♯‘𝑊))) = (♯‘𝑊)) |
15 | 11, 14 | eqtr2d 2832 | 1 ⊢ (𝑊 ∈ Word 𝑇 → (♯‘𝑊) = (♯‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3087 ∖ cdif 3764 {csn 4366 ↦ cmpt 4920 I cid 5217 dom cdm 5310 ran crn 5311 Fn wfn 6094 ‘cfv 6099 (class class class)co 6876 0cc0 10222 ℕ0cn0 11576 ..^cfzo 12716 ♯chash 13366 Word cword 13530 pmTrspcpmtr 18170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-2o 7798 df-oadd 7801 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-card 9049 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-n0 11577 df-z 11663 df-uz 11927 df-fz 12577 df-fzo 12717 df-hash 13367 df-word 13531 df-pmtr 18171 |
This theorem is referenced by: pmtrdifwrdel 18214 pmtrdifwrdel2 18215 |
Copyright terms: Public domain | W3C validator |