MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwrdl2 Structured version   Visualization version   GIF version

Theorem rusgrnumwrdl2 27376
Description: In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 6-May-2021.)
Hypothesis
Ref Expression
rusgrnumwrdl2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrnumwrdl2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑃   𝑤,𝑉
Allowed substitution hint:   𝐾(𝑤)

Proof of Theorem rusgrnumwrdl2
Dummy variables 𝑓 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rusgrnumwrdl2.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21fvexi 6659 . . . . 5 𝑉 ∈ V
32wrdexi 13869 . . . 4 Word 𝑉 ∈ V
43rabex 5199 . . 3 {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V
52a1i 11 . . . 4 (𝐺 RegUSGraph 𝐾𝑉 ∈ V)
6 wrd2f1tovbij 14315 . . . 4 ((𝑉 ∈ V ∧ 𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
75, 6sylan 583 . . 3 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
8 hasheqf1oi 13708 . . 3 ({𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)} → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})))
94, 7, 8mpsyl 68 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}))
101rusgrpropadjvtx 27375 . . . 4 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
11 preq1 4629 . . . . . . . . 9 (𝑝 = 𝑃 → {𝑝, 𝑠} = {𝑃, 𝑠})
1211eleq1d 2874 . . . . . . . 8 (𝑝 = 𝑃 → ({𝑝, 𝑠} ∈ (Edg‘𝐺) ↔ {𝑃, 𝑠} ∈ (Edg‘𝐺)))
1312rabbidv 3427 . . . . . . 7 (𝑝 = 𝑃 → {𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)} = {𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
1413fveqeq2d 6653 . . . . . 6 (𝑝 = 𝑃 → ((♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1514rspccv 3568 . . . . 5 (∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
16153ad2ant3 1132 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1710, 16syl 17 . . 3 (𝐺 RegUSGraph 𝐾 → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1817imp 410 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)
199, 18eqtrd 2833 1 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  {cpr 4527   class class class wbr 5030  1-1-ontowf1o 6323  cfv 6324  0cc0 10526  1c1 10527  2c2 11680  0*cxnn0 11955  chash 13686  Word cword 13857  Vtxcvtx 26789  Edgcedg 26840  USGraphcusgr 26942   RegUSGraph crusgr 27346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-edg 26841  df-uhgr 26851  df-ushgr 26852  df-upgr 26875  df-umgr 26876  df-uspgr 26943  df-usgr 26944  df-nbgr 27123  df-vtxdg 27256  df-rgr 27347  df-rusgr 27348
This theorem is referenced by:  rusgrnumwwlkl1  27754  clwwlknon2num  27890
  Copyright terms: Public domain W3C validator