MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwrdl2 Structured version   Visualization version   GIF version

Theorem rusgrnumwrdl2 29560
Description: In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 6-May-2021.)
Hypothesis
Ref Expression
rusgrnumwrdl2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrnumwrdl2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑃   𝑤,𝑉
Allowed substitution hint:   𝐾(𝑤)

Proof of Theorem rusgrnumwrdl2
Dummy variables 𝑓 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rusgrnumwrdl2.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21fvexi 6831 . . . . 5 𝑉 ∈ V
32wrdexi 14428 . . . 4 Word 𝑉 ∈ V
43rabex 5272 . . 3 {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V
52a1i 11 . . . 4 (𝐺 RegUSGraph 𝐾𝑉 ∈ V)
6 wrd2f1tovbij 14862 . . . 4 ((𝑉 ∈ V ∧ 𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
75, 6sylan 580 . . 3 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
8 hasheqf1oi 14253 . . 3 ({𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)} → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})))
94, 7, 8mpsyl 68 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}))
101rusgrpropadjvtx 29559 . . . 4 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
11 preq1 4681 . . . . . . . . 9 (𝑝 = 𝑃 → {𝑝, 𝑠} = {𝑃, 𝑠})
1211eleq1d 2816 . . . . . . . 8 (𝑝 = 𝑃 → ({𝑝, 𝑠} ∈ (Edg‘𝐺) ↔ {𝑃, 𝑠} ∈ (Edg‘𝐺)))
1312rabbidv 3402 . . . . . . 7 (𝑝 = 𝑃 → {𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)} = {𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
1413fveqeq2d 6825 . . . . . 6 (𝑝 = 𝑃 → ((♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1514rspccv 3569 . . . . 5 (∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
16153ad2ant3 1135 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1710, 16syl 17 . . 3 (𝐺 RegUSGraph 𝐾 → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1817imp 406 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)
199, 18eqtrd 2766 1 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  {cpr 4573   class class class wbr 5086  1-1-ontowf1o 6475  cfv 6476  0cc0 11001  1c1 11002  2c2 12175  0*cxnn0 12449  chash 14232  Word cword 14415  Vtxcvtx 28969  Edgcedg 29020  USGraphcusgr 29122   RegUSGraph crusgr 29530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-xadd 13007  df-fz 13403  df-fzo 13550  df-hash 14233  df-word 14416  df-edg 29021  df-uhgr 29031  df-ushgr 29032  df-upgr 29055  df-umgr 29056  df-uspgr 29123  df-usgr 29124  df-nbgr 29306  df-vtxdg 29440  df-rgr 29531  df-rusgr 29532
This theorem is referenced by:  rusgrnumwwlkl1  29941  clwwlknon2num  30077
  Copyright terms: Public domain W3C validator