MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwrdl2 Structured version   Visualization version   GIF version

Theorem rusgrnumwrdl2 29521
Description: In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 6-May-2021.)
Hypothesis
Ref Expression
rusgrnumwrdl2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrnumwrdl2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑃   𝑤,𝑉
Allowed substitution hint:   𝐾(𝑤)

Proof of Theorem rusgrnumwrdl2
Dummy variables 𝑓 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rusgrnumwrdl2.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21fvexi 6875 . . . . 5 𝑉 ∈ V
32wrdexi 14498 . . . 4 Word 𝑉 ∈ V
43rabex 5297 . . 3 {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V
52a1i 11 . . . 4 (𝐺 RegUSGraph 𝐾𝑉 ∈ V)
6 wrd2f1tovbij 14933 . . . 4 ((𝑉 ∈ V ∧ 𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
75, 6sylan 580 . . 3 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
8 hasheqf1oi 14323 . . 3 ({𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)} → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})))
94, 7, 8mpsyl 68 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}))
101rusgrpropadjvtx 29520 . . . 4 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
11 preq1 4700 . . . . . . . . 9 (𝑝 = 𝑃 → {𝑝, 𝑠} = {𝑃, 𝑠})
1211eleq1d 2814 . . . . . . . 8 (𝑝 = 𝑃 → ({𝑝, 𝑠} ∈ (Edg‘𝐺) ↔ {𝑃, 𝑠} ∈ (Edg‘𝐺)))
1312rabbidv 3416 . . . . . . 7 (𝑝 = 𝑃 → {𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)} = {𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
1413fveqeq2d 6869 . . . . . 6 (𝑝 = 𝑃 → ((♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1514rspccv 3588 . . . . 5 (∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
16153ad2ant3 1135 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1710, 16syl 17 . . 3 (𝐺 RegUSGraph 𝐾 → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1817imp 406 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)
199, 18eqtrd 2765 1 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  {cpr 4594   class class class wbr 5110  1-1-ontowf1o 6513  cfv 6514  0cc0 11075  1c1 11076  2c2 12248  0*cxnn0 12522  chash 14302  Word cword 14485  Vtxcvtx 28930  Edgcedg 28981  USGraphcusgr 29083   RegUSGraph crusgr 29491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-xadd 13080  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-edg 28982  df-uhgr 28992  df-ushgr 28993  df-upgr 29016  df-umgr 29017  df-uspgr 29084  df-usgr 29085  df-nbgr 29267  df-vtxdg 29401  df-rgr 29492  df-rusgr 29493
This theorem is referenced by:  rusgrnumwwlkl1  29905  clwwlknon2num  30041
  Copyright terms: Public domain W3C validator