![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrnumwrdl2 | Structured version Visualization version GIF version |
Description: In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 6-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwrdl2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
rusgrnumwrdl2 | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrnumwrdl2.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | fvexi 6895 | . . . . 5 ⊢ 𝑉 ∈ V |
3 | 2 | wrdexi 14463 | . . . 4 ⊢ Word 𝑉 ∈ V |
4 | 3 | rabex 5328 | . . 3 ⊢ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V |
5 | 2 | a1i 11 | . . . 4 ⊢ (𝐺 RegUSGraph 𝐾 → 𝑉 ∈ V) |
6 | wrd2f1tovbij 14898 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑃 ∈ 𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) | |
7 | 5, 6 | sylan 581 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) |
8 | hasheqf1oi 14298 | . . 3 ⊢ ({𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)} → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}))) | |
9 | 4, 7, 8 | mpsyl 68 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})) |
10 | 1 | rusgrpropadjvtx 28809 | . . . 4 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
11 | preq1 4733 | . . . . . . . . 9 ⊢ (𝑝 = 𝑃 → {𝑝, 𝑠} = {𝑃, 𝑠}) | |
12 | 11 | eleq1d 2819 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → ({𝑝, 𝑠} ∈ (Edg‘𝐺) ↔ {𝑃, 𝑠} ∈ (Edg‘𝐺))) |
13 | 12 | rabbidv 3441 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → {𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)} = {𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) |
14 | 13 | fveqeq2d 6889 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
15 | 14 | rspccv 3608 | . . . . 5 ⊢ (∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
16 | 15 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
17 | 10, 16 | syl 17 | . . 3 ⊢ (𝐺 RegUSGraph 𝐾 → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
18 | 17 | imp 408 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) |
19 | 9, 18 | eqtrd 2773 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∀wral 3062 {crab 3433 Vcvv 3475 {cpr 4626 class class class wbr 5144 –1-1-onto→wf1o 6534 ‘cfv 6535 0cc0 11097 1c1 11098 2c2 12254 ℕ0*cxnn0 12531 ♯chash 14277 Word cword 14451 Vtxcvtx 28223 Edgcedg 28274 USGraphcusgr 28376 RegUSGraph crusgr 28780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-2o 8454 df-oadd 8457 df-er 8691 df-map 8810 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-dju 9883 df-card 9921 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-2 12262 df-n0 12460 df-xnn0 12532 df-z 12546 df-uz 12810 df-xadd 13080 df-fz 13472 df-fzo 13615 df-hash 14278 df-word 14452 df-edg 28275 df-uhgr 28285 df-ushgr 28286 df-upgr 28309 df-umgr 28310 df-uspgr 28377 df-usgr 28378 df-nbgr 28557 df-vtxdg 28690 df-rgr 28781 df-rusgr 28782 |
This theorem is referenced by: rusgrnumwwlkl1 29189 clwwlknon2num 29325 |
Copyright terms: Public domain | W3C validator |