MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwrdl2 Structured version   Visualization version   GIF version

Theorem rusgrnumwrdl2 29498
Description: In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 6-May-2021.)
Hypothesis
Ref Expression
rusgrnumwrdl2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrnumwrdl2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑃   𝑤,𝑉
Allowed substitution hint:   𝐾(𝑤)

Proof of Theorem rusgrnumwrdl2
Dummy variables 𝑓 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rusgrnumwrdl2.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21fvexi 6886 . . . . 5 𝑉 ∈ V
32wrdexi 14531 . . . 4 Word 𝑉 ∈ V
43rabex 5306 . . 3 {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V
52a1i 11 . . . 4 (𝐺 RegUSGraph 𝐾𝑉 ∈ V)
6 wrd2f1tovbij 14966 . . . 4 ((𝑉 ∈ V ∧ 𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
75, 6sylan 580 . . 3 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
8 hasheqf1oi 14357 . . 3 ({𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)} → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})))
94, 7, 8mpsyl 68 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}))
101rusgrpropadjvtx 29497 . . . 4 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
11 preq1 4706 . . . . . . . . 9 (𝑝 = 𝑃 → {𝑝, 𝑠} = {𝑃, 𝑠})
1211eleq1d 2818 . . . . . . . 8 (𝑝 = 𝑃 → ({𝑝, 𝑠} ∈ (Edg‘𝐺) ↔ {𝑃, 𝑠} ∈ (Edg‘𝐺)))
1312rabbidv 3421 . . . . . . 7 (𝑝 = 𝑃 → {𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)} = {𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
1413fveqeq2d 6880 . . . . . 6 (𝑝 = 𝑃 → ((♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1514rspccv 3596 . . . . 5 (∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
16153ad2ant3 1135 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1710, 16syl 17 . . 3 (𝐺 RegUSGraph 𝐾 → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1817imp 406 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)
199, 18eqtrd 2769 1 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wral 3050  {crab 3413  Vcvv 3457  {cpr 4601   class class class wbr 5116  1-1-ontowf1o 6526  cfv 6527  0cc0 11121  1c1 11122  2c2 12287  0*cxnn0 12566  chash 14336  Word cword 14519  Vtxcvtx 28907  Edgcedg 28958  USGraphcusgr 29060   RegUSGraph crusgr 29468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-oadd 8478  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-dju 9907  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-n0 12494  df-xnn0 12567  df-z 12581  df-uz 12845  df-xadd 13121  df-fz 13514  df-fzo 13661  df-hash 14337  df-word 14520  df-edg 28959  df-uhgr 28969  df-ushgr 28970  df-upgr 28993  df-umgr 28994  df-uspgr 29061  df-usgr 29062  df-nbgr 29244  df-vtxdg 29378  df-rgr 29469  df-rusgr 29470
This theorem is referenced by:  rusgrnumwwlkl1  29882  clwwlknon2num  30018
  Copyright terms: Public domain W3C validator