MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwrdl2 Structured version   Visualization version   GIF version

Theorem rusgrnumwrdl2 27368
Description: In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 6-May-2021.)
Hypothesis
Ref Expression
rusgrnumwrdl2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrnumwrdl2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
Distinct variable groups:   𝑤,𝐺   𝑤,𝑃   𝑤,𝑉
Allowed substitution hint:   𝐾(𝑤)

Proof of Theorem rusgrnumwrdl2
Dummy variables 𝑓 𝑝 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rusgrnumwrdl2.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21fvexi 6684 . . . . 5 𝑉 ∈ V
32wrdexi 13875 . . . 4 Word 𝑉 ∈ V
43rabex 5235 . . 3 {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V
52a1i 11 . . . 4 (𝐺 RegUSGraph 𝐾𝑉 ∈ V)
6 wrd2f1tovbij 14324 . . . 4 ((𝑉 ∈ V ∧ 𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
75, 6sylan 582 . . 3 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
8 hasheqf1oi 13713 . . 3 ({𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)} → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})))
94, 7, 8mpsyl 68 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}))
101rusgrpropadjvtx 27367 . . . 4 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
11 preq1 4669 . . . . . . . . 9 (𝑝 = 𝑃 → {𝑝, 𝑠} = {𝑃, 𝑠})
1211eleq1d 2897 . . . . . . . 8 (𝑝 = 𝑃 → ({𝑝, 𝑠} ∈ (Edg‘𝐺) ↔ {𝑃, 𝑠} ∈ (Edg‘𝐺)))
1312rabbidv 3480 . . . . . . 7 (𝑝 = 𝑃 → {𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)} = {𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})
1413fveqeq2d 6678 . . . . . 6 (𝑝 = 𝑃 → ((♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1514rspccv 3620 . . . . 5 (∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
16153ad2ant3 1131 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑠𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1710, 16syl 17 . . 3 (𝐺 RegUSGraph 𝐾 → (𝑃𝑉 → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾))
1817imp 409 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑠𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)
199, 18eqtrd 2856 1 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3138  {crab 3142  Vcvv 3494  {cpr 4569   class class class wbr 5066  1-1-ontowf1o 6354  cfv 6355  0cc0 10537  1c1 10538  2c2 11693  0*cxnn0 11968  chash 13691  Word cword 13862  Vtxcvtx 26781  Edgcedg 26832  USGraphcusgr 26934   RegUSGraph crusgr 27338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-xadd 12509  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-edg 26833  df-uhgr 26843  df-ushgr 26844  df-upgr 26867  df-umgr 26868  df-uspgr 26935  df-usgr 26936  df-nbgr 27115  df-vtxdg 27248  df-rgr 27339  df-rusgr 27340
This theorem is referenced by:  rusgrnumwwlkl1  27747  clwwlknon2num  27884
  Copyright terms: Public domain W3C validator