![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrnumwrdl2 | Structured version Visualization version GIF version |
Description: In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 6-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwrdl2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
rusgrnumwrdl2 | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrnumwrdl2.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | fvexi 6905 | . . . . 5 ⊢ 𝑉 ∈ V |
3 | 2 | wrdexi 14500 | . . . 4 ⊢ Word 𝑉 ∈ V |
4 | 3 | rabex 5328 | . . 3 ⊢ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V |
5 | 2 | a1i 11 | . . . 4 ⊢ (𝐺 RegUSGraph 𝐾 → 𝑉 ∈ V) |
6 | wrd2f1tovbij 14935 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑃 ∈ 𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) | |
7 | 5, 6 | sylan 579 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) |
8 | hasheqf1oi 14334 | . . 3 ⊢ ({𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)} → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}))) | |
9 | 4, 7, 8 | mpsyl 68 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})) |
10 | 1 | rusgrpropadjvtx 29386 | . . . 4 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
11 | preq1 4733 | . . . . . . . . 9 ⊢ (𝑝 = 𝑃 → {𝑝, 𝑠} = {𝑃, 𝑠}) | |
12 | 11 | eleq1d 2813 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → ({𝑝, 𝑠} ∈ (Edg‘𝐺) ↔ {𝑃, 𝑠} ∈ (Edg‘𝐺))) |
13 | 12 | rabbidv 3435 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → {𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)} = {𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) |
14 | 13 | fveqeq2d 6899 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
15 | 14 | rspccv 3604 | . . . . 5 ⊢ (∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
16 | 15 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
17 | 10, 16 | syl 17 | . . 3 ⊢ (𝐺 RegUSGraph 𝐾 → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
18 | 17 | imp 406 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) |
19 | 9, 18 | eqtrd 2767 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∀wral 3056 {crab 3427 Vcvv 3469 {cpr 4626 class class class wbr 5142 –1-1-onto→wf1o 6541 ‘cfv 6542 0cc0 11130 1c1 11131 2c2 12289 ℕ0*cxnn0 12566 ♯chash 14313 Word cword 14488 Vtxcvtx 28796 Edgcedg 28847 USGraphcusgr 28949 RegUSGraph crusgr 29357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-n0 12495 df-xnn0 12567 df-z 12581 df-uz 12845 df-xadd 13117 df-fz 13509 df-fzo 13652 df-hash 14314 df-word 14489 df-edg 28848 df-uhgr 28858 df-ushgr 28859 df-upgr 28882 df-umgr 28883 df-uspgr 28950 df-usgr 28951 df-nbgr 29133 df-vtxdg 29267 df-rgr 29358 df-rusgr 29359 |
This theorem is referenced by: rusgrnumwwlkl1 29766 clwwlknon2num 29902 |
Copyright terms: Public domain | W3C validator |