Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rusgrnumwrdl2 | Structured version Visualization version GIF version |
Description: In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 6-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwrdl2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
rusgrnumwrdl2 | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrnumwrdl2.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | fvexi 6770 | . . . . 5 ⊢ 𝑉 ∈ V |
3 | 2 | wrdexi 14157 | . . . 4 ⊢ Word 𝑉 ∈ V |
4 | 3 | rabex 5251 | . . 3 ⊢ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V |
5 | 2 | a1i 11 | . . . 4 ⊢ (𝐺 RegUSGraph 𝐾 → 𝑉 ∈ V) |
6 | wrd2f1tovbij 14603 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑃 ∈ 𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) | |
7 | 5, 6 | sylan 579 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) |
8 | hasheqf1oi 13994 | . . 3 ⊢ ({𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)} → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}))) | |
9 | 4, 7, 8 | mpsyl 68 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})) |
10 | 1 | rusgrpropadjvtx 27855 | . . . 4 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
11 | preq1 4666 | . . . . . . . . 9 ⊢ (𝑝 = 𝑃 → {𝑝, 𝑠} = {𝑃, 𝑠}) | |
12 | 11 | eleq1d 2823 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → ({𝑝, 𝑠} ∈ (Edg‘𝐺) ↔ {𝑃, 𝑠} ∈ (Edg‘𝐺))) |
13 | 12 | rabbidv 3404 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → {𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)} = {𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) |
14 | 13 | fveqeq2d 6764 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
15 | 14 | rspccv 3549 | . . . . 5 ⊢ (∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
16 | 15 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
17 | 10, 16 | syl 17 | . . 3 ⊢ (𝐺 RegUSGraph 𝐾 → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
18 | 17 | imp 406 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) |
19 | 9, 18 | eqtrd 2778 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 {cpr 4560 class class class wbr 5070 –1-1-onto→wf1o 6417 ‘cfv 6418 0cc0 10802 1c1 10803 2c2 11958 ℕ0*cxnn0 12235 ♯chash 13972 Word cword 14145 Vtxcvtx 27269 Edgcedg 27320 USGraphcusgr 27422 RegUSGraph crusgr 27826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-xadd 12778 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-edg 27321 df-uhgr 27331 df-ushgr 27332 df-upgr 27355 df-umgr 27356 df-uspgr 27423 df-usgr 27424 df-nbgr 27603 df-vtxdg 27736 df-rgr 27827 df-rusgr 27828 |
This theorem is referenced by: rusgrnumwwlkl1 28234 clwwlknon2num 28370 |
Copyright terms: Public domain | W3C validator |