Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rusgrnumwrdl2 | Structured version Visualization version GIF version |
Description: In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 6-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwrdl2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
rusgrnumwrdl2 | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrnumwrdl2.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | fvexi 6688 | . . . . 5 ⊢ 𝑉 ∈ V |
3 | 2 | wrdexi 13967 | . . . 4 ⊢ Word 𝑉 ∈ V |
4 | 3 | rabex 5200 | . . 3 ⊢ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V |
5 | 2 | a1i 11 | . . . 4 ⊢ (𝐺 RegUSGraph 𝐾 → 𝑉 ∈ V) |
6 | wrd2f1tovbij 14413 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑃 ∈ 𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) | |
7 | 5, 6 | sylan 583 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) |
8 | hasheqf1oi 13804 | . . 3 ⊢ ({𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)} → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}))) | |
9 | 4, 7, 8 | mpsyl 68 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})) |
10 | 1 | rusgrpropadjvtx 27527 | . . . 4 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
11 | preq1 4624 | . . . . . . . . 9 ⊢ (𝑝 = 𝑃 → {𝑝, 𝑠} = {𝑃, 𝑠}) | |
12 | 11 | eleq1d 2817 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → ({𝑝, 𝑠} ∈ (Edg‘𝐺) ↔ {𝑃, 𝑠} ∈ (Edg‘𝐺))) |
13 | 12 | rabbidv 3381 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → {𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)} = {𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) |
14 | 13 | fveqeq2d 6682 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
15 | 14 | rspccv 3523 | . . . . 5 ⊢ (∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
16 | 15 | 3ad2ant3 1136 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
17 | 10, 16 | syl 17 | . . 3 ⊢ (𝐺 RegUSGraph 𝐾 → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
18 | 17 | imp 410 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) |
19 | 9, 18 | eqtrd 2773 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∃wex 1786 ∈ wcel 2114 ∀wral 3053 {crab 3057 Vcvv 3398 {cpr 4518 class class class wbr 5030 –1-1-onto→wf1o 6338 ‘cfv 6339 0cc0 10615 1c1 10616 2c2 11771 ℕ0*cxnn0 12048 ♯chash 13782 Word cword 13955 Vtxcvtx 26941 Edgcedg 26992 USGraphcusgr 27094 RegUSGraph crusgr 27498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-oadd 8135 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-dju 9403 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-n0 11977 df-xnn0 12049 df-z 12063 df-uz 12325 df-xadd 12591 df-fz 12982 df-fzo 13125 df-hash 13783 df-word 13956 df-edg 26993 df-uhgr 27003 df-ushgr 27004 df-upgr 27027 df-umgr 27028 df-uspgr 27095 df-usgr 27096 df-nbgr 27275 df-vtxdg 27408 df-rgr 27499 df-rusgr 27500 |
This theorem is referenced by: rusgrnumwwlkl1 27906 clwwlknon2num 28042 |
Copyright terms: Public domain | W3C validator |