| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rusgrnumwrdl2 | Structured version Visualization version GIF version | ||
| Description: In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 6-May-2021.) |
| Ref | Expression |
|---|---|
| rusgrnumwrdl2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| rusgrnumwrdl2 | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rusgrnumwrdl2.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | fvexi 6886 | . . . . 5 ⊢ 𝑉 ∈ V |
| 3 | 2 | wrdexi 14531 | . . . 4 ⊢ Word 𝑉 ∈ V |
| 4 | 3 | rabex 5306 | . . 3 ⊢ {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V |
| 5 | 2 | a1i 11 | . . . 4 ⊢ (𝐺 RegUSGraph 𝐾 → 𝑉 ∈ V) |
| 6 | wrd2f1tovbij 14966 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝑃 ∈ 𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) | |
| 7 | 5, 6 | sylan 580 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → ∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) |
| 8 | hasheqf1oi 14357 | . . 3 ⊢ ({𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))} ∈ V → (∃𝑓 𝑓:{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}–1-1-onto→{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)} → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}))) | |
| 9 | 4, 7, 8 | mpsyl 68 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)})) |
| 10 | 1 | rusgrpropadjvtx 29497 | . . . 4 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
| 11 | preq1 4706 | . . . . . . . . 9 ⊢ (𝑝 = 𝑃 → {𝑝, 𝑠} = {𝑃, 𝑠}) | |
| 12 | 11 | eleq1d 2818 | . . . . . . . 8 ⊢ (𝑝 = 𝑃 → ({𝑝, 𝑠} ∈ (Edg‘𝐺) ↔ {𝑃, 𝑠} ∈ (Edg‘𝐺))) |
| 13 | 12 | rabbidv 3421 | . . . . . . 7 ⊢ (𝑝 = 𝑃 → {𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)} = {𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) |
| 14 | 13 | fveqeq2d 6880 | . . . . . 6 ⊢ (𝑝 = 𝑃 → ((♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
| 15 | 14 | rspccv 3596 | . . . . 5 ⊢ (∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾 → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
| 16 | 15 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝 ∈ 𝑉 (♯‘{𝑠 ∈ 𝑉 ∣ {𝑝, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
| 17 | 10, 16 | syl 17 | . . 3 ⊢ (𝐺 RegUSGraph 𝐾 → (𝑃 ∈ 𝑉 → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾)) |
| 18 | 17 | imp 406 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑠 ∈ 𝑉 ∣ {𝑃, 𝑠} ∈ (Edg‘𝐺)}) = 𝐾) |
| 19 | 9, 18 | eqtrd 2769 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∀wral 3050 {crab 3413 Vcvv 3457 {cpr 4601 class class class wbr 5116 –1-1-onto→wf1o 6526 ‘cfv 6527 0cc0 11121 1c1 11122 2c2 12287 ℕ0*cxnn0 12566 ♯chash 14336 Word cword 14519 Vtxcvtx 28907 Edgcedg 28958 USGraphcusgr 29060 RegUSGraph crusgr 29468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-1st 7982 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-oadd 8478 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-dju 9907 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-n0 12494 df-xnn0 12567 df-z 12581 df-uz 12845 df-xadd 13121 df-fz 13514 df-fzo 13661 df-hash 14337 df-word 14520 df-edg 28959 df-uhgr 28969 df-ushgr 28970 df-upgr 28993 df-umgr 28994 df-uspgr 29061 df-usgr 29062 df-nbgr 29244 df-vtxdg 29378 df-rgr 29469 df-rusgr 29470 |
| This theorem is referenced by: rusgrnumwwlkl1 29882 clwwlknon2num 30018 |
| Copyright terms: Public domain | W3C validator |