MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredg4 Structured version   Visualization version   GIF version

Theorem usgredg4 27584
Description: For a vertex incident to an edge there is another vertex incident to the edge. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 17-Oct-2020.)
Hypotheses
Ref Expression
usgredg3.v 𝑉 = (Vtx‘𝐺)
usgredg3.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
usgredg4 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑋   𝑦,𝑌

Proof of Theorem usgredg4
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgredg3.v . . . 4 𝑉 = (Vtx‘𝐺)
2 usgredg3.e . . . 4 𝐸 = (iEdg‘𝐺)
31, 2usgredg3 27583 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → ∃𝑥𝑉𝑧𝑉 (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))
4 eleq2 2827 . . . . . . . 8 ((𝐸𝑋) = {𝑥, 𝑧} → (𝑌 ∈ (𝐸𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧}))
54adantl 482 . . . . . . 7 ((𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧}))
65adantl 482 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ (𝐸𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧}))
7 simplrr 775 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → 𝑧𝑉)
87adantl 482 . . . . . . . . . . 11 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → 𝑧𝑉)
9 preq2 4670 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → {𝑥, 𝑦} = {𝑥, 𝑧})
109eqeq2d 2749 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ({𝑥, 𝑧} = {𝑥, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑧}))
1110adantl 482 . . . . . . . . . . 11 (((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) ∧ 𝑦 = 𝑧) → ({𝑥, 𝑧} = {𝑥, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑧}))
12 eqidd 2739 . . . . . . . . . . 11 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → {𝑥, 𝑧} = {𝑥, 𝑧})
138, 11, 12rspcedvd 3563 . . . . . . . . . 10 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ∃𝑦𝑉 {𝑥, 𝑧} = {𝑥, 𝑦})
14 simprr 770 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → (𝐸𝑋) = {𝑥, 𝑧})
15 preq1 4669 . . . . . . . . . . . 12 (𝑌 = 𝑥 → {𝑌, 𝑦} = {𝑥, 𝑦})
1614, 15eqeqan12rd 2753 . . . . . . . . . . 11 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ((𝐸𝑋) = {𝑌, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑦}))
1716rexbidv 3226 . . . . . . . . . 10 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → (∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦} ↔ ∃𝑦𝑉 {𝑥, 𝑧} = {𝑥, 𝑦}))
1813, 17mpbird 256 . . . . . . . . 9 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
1918ex 413 . . . . . . . 8 (𝑌 = 𝑥 → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
20 simplrl 774 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → 𝑥𝑉)
2120adantl 482 . . . . . . . . . . 11 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → 𝑥𝑉)
22 preq2 4670 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → {𝑧, 𝑦} = {𝑧, 𝑥})
2322eqeq2d 2749 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ({𝑥, 𝑧} = {𝑧, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑥}))
2423adantl 482 . . . . . . . . . . 11 (((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) ∧ 𝑦 = 𝑥) → ({𝑥, 𝑧} = {𝑧, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑥}))
25 prcom 4668 . . . . . . . . . . . 12 {𝑥, 𝑧} = {𝑧, 𝑥}
2625a1i 11 . . . . . . . . . . 11 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → {𝑥, 𝑧} = {𝑧, 𝑥})
2721, 24, 26rspcedvd 3563 . . . . . . . . . 10 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ∃𝑦𝑉 {𝑥, 𝑧} = {𝑧, 𝑦})
28 preq1 4669 . . . . . . . . . . . 12 (𝑌 = 𝑧 → {𝑌, 𝑦} = {𝑧, 𝑦})
2914, 28eqeqan12rd 2753 . . . . . . . . . . 11 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ((𝐸𝑋) = {𝑌, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑦}))
3029rexbidv 3226 . . . . . . . . . 10 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → (∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦} ↔ ∃𝑦𝑉 {𝑥, 𝑧} = {𝑧, 𝑦}))
3127, 30mpbird 256 . . . . . . . . 9 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
3231ex 413 . . . . . . . 8 (𝑌 = 𝑧 → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
3319, 32jaoi 854 . . . . . . 7 ((𝑌 = 𝑥𝑌 = 𝑧) → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
34 elpri 4583 . . . . . . 7 (𝑌 ∈ {𝑥, 𝑧} → (𝑌 = 𝑥𝑌 = 𝑧))
3533, 34syl11 33 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ {𝑥, 𝑧} → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
366, 35sylbid 239 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ (𝐸𝑋) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
3736ex 413 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) → ((𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸𝑋) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})))
3837rexlimdvva 3223 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (∃𝑥𝑉𝑧𝑉 (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸𝑋) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})))
393, 38mpd 15 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝑌 ∈ (𝐸𝑋) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
40393impia 1116 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {cpr 4563  dom cdm 5589  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367  USGraphcusgr 27519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-umgr 27453  df-usgr 27521
This theorem is referenced by:  usgredgreu  27585
  Copyright terms: Public domain W3C validator