MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredg4 Structured version   Visualization version   GIF version

Theorem usgredg4 27487
Description: For a vertex incident to an edge there is another vertex incident to the edge. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 17-Oct-2020.)
Hypotheses
Ref Expression
usgredg3.v 𝑉 = (Vtx‘𝐺)
usgredg3.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
usgredg4 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑋   𝑦,𝑌

Proof of Theorem usgredg4
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgredg3.v . . . 4 𝑉 = (Vtx‘𝐺)
2 usgredg3.e . . . 4 𝐸 = (iEdg‘𝐺)
31, 2usgredg3 27486 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → ∃𝑥𝑉𝑧𝑉 (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))
4 eleq2 2827 . . . . . . . 8 ((𝐸𝑋) = {𝑥, 𝑧} → (𝑌 ∈ (𝐸𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧}))
54adantl 481 . . . . . . 7 ((𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧}))
65adantl 481 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ (𝐸𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧}))
7 simplrr 774 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → 𝑧𝑉)
87adantl 481 . . . . . . . . . . 11 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → 𝑧𝑉)
9 preq2 4667 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → {𝑥, 𝑦} = {𝑥, 𝑧})
109eqeq2d 2749 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ({𝑥, 𝑧} = {𝑥, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑧}))
1110adantl 481 . . . . . . . . . . 11 (((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) ∧ 𝑦 = 𝑧) → ({𝑥, 𝑧} = {𝑥, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑧}))
12 eqidd 2739 . . . . . . . . . . 11 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → {𝑥, 𝑧} = {𝑥, 𝑧})
138, 11, 12rspcedvd 3555 . . . . . . . . . 10 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ∃𝑦𝑉 {𝑥, 𝑧} = {𝑥, 𝑦})
14 simprr 769 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → (𝐸𝑋) = {𝑥, 𝑧})
15 preq1 4666 . . . . . . . . . . . 12 (𝑌 = 𝑥 → {𝑌, 𝑦} = {𝑥, 𝑦})
1614, 15eqeqan12rd 2753 . . . . . . . . . . 11 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ((𝐸𝑋) = {𝑌, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑦}))
1716rexbidv 3225 . . . . . . . . . 10 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → (∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦} ↔ ∃𝑦𝑉 {𝑥, 𝑧} = {𝑥, 𝑦}))
1813, 17mpbird 256 . . . . . . . . 9 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
1918ex 412 . . . . . . . 8 (𝑌 = 𝑥 → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
20 simplrl 773 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → 𝑥𝑉)
2120adantl 481 . . . . . . . . . . 11 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → 𝑥𝑉)
22 preq2 4667 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → {𝑧, 𝑦} = {𝑧, 𝑥})
2322eqeq2d 2749 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ({𝑥, 𝑧} = {𝑧, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑥}))
2423adantl 481 . . . . . . . . . . 11 (((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) ∧ 𝑦 = 𝑥) → ({𝑥, 𝑧} = {𝑧, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑥}))
25 prcom 4665 . . . . . . . . . . . 12 {𝑥, 𝑧} = {𝑧, 𝑥}
2625a1i 11 . . . . . . . . . . 11 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → {𝑥, 𝑧} = {𝑧, 𝑥})
2721, 24, 26rspcedvd 3555 . . . . . . . . . 10 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ∃𝑦𝑉 {𝑥, 𝑧} = {𝑧, 𝑦})
28 preq1 4666 . . . . . . . . . . . 12 (𝑌 = 𝑧 → {𝑌, 𝑦} = {𝑧, 𝑦})
2914, 28eqeqan12rd 2753 . . . . . . . . . . 11 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ((𝐸𝑋) = {𝑌, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑦}))
3029rexbidv 3225 . . . . . . . . . 10 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → (∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦} ↔ ∃𝑦𝑉 {𝑥, 𝑧} = {𝑧, 𝑦}))
3127, 30mpbird 256 . . . . . . . . 9 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
3231ex 412 . . . . . . . 8 (𝑌 = 𝑧 → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
3319, 32jaoi 853 . . . . . . 7 ((𝑌 = 𝑥𝑌 = 𝑧) → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
34 elpri 4580 . . . . . . 7 (𝑌 ∈ {𝑥, 𝑧} → (𝑌 = 𝑥𝑌 = 𝑧))
3533, 34syl11 33 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ {𝑥, 𝑧} → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
366, 35sylbid 239 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ (𝐸𝑋) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
3736ex 412 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) → ((𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸𝑋) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})))
3837rexlimdvva 3222 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (∃𝑥𝑉𝑧𝑉 (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸𝑋) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})))
393, 38mpd 15 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝑌 ∈ (𝐸𝑋) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
40393impia 1115 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {cpr 4560  dom cdm 5580  cfv 6418  Vtxcvtx 27269  iEdgciedg 27270  USGraphcusgr 27422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-edg 27321  df-umgr 27356  df-usgr 27424
This theorem is referenced by:  usgredgreu  27488
  Copyright terms: Public domain W3C validator