Step | Hyp | Ref
| Expression |
1 | | usgredg3.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | usgredg3.e |
. . . 4
⊢ 𝐸 = (iEdg‘𝐺) |
3 | 1, 2 | usgredg3 27583 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → ∃𝑥 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) |
4 | | eleq2 2827 |
. . . . . . . 8
⊢ ((𝐸‘𝑋) = {𝑥, 𝑧} → (𝑌 ∈ (𝐸‘𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧})) |
5 | 4 | adantl 482 |
. . . . . . 7
⊢ ((𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸‘𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧})) |
6 | 5 | adantl 482 |
. . . . . 6
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ (𝐸‘𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧})) |
7 | | simplrr 775 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → 𝑧 ∈ 𝑉) |
8 | 7 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → 𝑧 ∈ 𝑉) |
9 | | preq2 4670 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → {𝑥, 𝑦} = {𝑥, 𝑧}) |
10 | 9 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → ({𝑥, 𝑧} = {𝑥, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑧})) |
11 | 10 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) ∧ 𝑦 = 𝑧) → ({𝑥, 𝑧} = {𝑥, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑧})) |
12 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → {𝑥, 𝑧} = {𝑥, 𝑧}) |
13 | 8, 11, 12 | rspcedvd 3563 |
. . . . . . . . . 10
⊢ ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → ∃𝑦 ∈ 𝑉 {𝑥, 𝑧} = {𝑥, 𝑦}) |
14 | | simprr 770 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → (𝐸‘𝑋) = {𝑥, 𝑧}) |
15 | | preq1 4669 |
. . . . . . . . . . . 12
⊢ (𝑌 = 𝑥 → {𝑌, 𝑦} = {𝑥, 𝑦}) |
16 | 14, 15 | eqeqan12rd 2753 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → ((𝐸‘𝑋) = {𝑌, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑦})) |
17 | 16 | rexbidv 3226 |
. . . . . . . . . 10
⊢ ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → (∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦} ↔ ∃𝑦 ∈ 𝑉 {𝑥, 𝑧} = {𝑥, 𝑦})) |
18 | 13, 17 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) |
19 | 18 | ex 413 |
. . . . . . . 8
⊢ (𝑌 = 𝑥 → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦})) |
20 | | simplrl 774 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → 𝑥 ∈ 𝑉) |
21 | 20 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → 𝑥 ∈ 𝑉) |
22 | | preq2 4670 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑥 → {𝑧, 𝑦} = {𝑧, 𝑥}) |
23 | 22 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → ({𝑥, 𝑧} = {𝑧, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑥})) |
24 | 23 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) ∧ 𝑦 = 𝑥) → ({𝑥, 𝑧} = {𝑧, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑥})) |
25 | | prcom 4668 |
. . . . . . . . . . . 12
⊢ {𝑥, 𝑧} = {𝑧, 𝑥} |
26 | 25 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → {𝑥, 𝑧} = {𝑧, 𝑥}) |
27 | 21, 24, 26 | rspcedvd 3563 |
. . . . . . . . . 10
⊢ ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → ∃𝑦 ∈ 𝑉 {𝑥, 𝑧} = {𝑧, 𝑦}) |
28 | | preq1 4669 |
. . . . . . . . . . . 12
⊢ (𝑌 = 𝑧 → {𝑌, 𝑦} = {𝑧, 𝑦}) |
29 | 14, 28 | eqeqan12rd 2753 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → ((𝐸‘𝑋) = {𝑌, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑦})) |
30 | 29 | rexbidv 3226 |
. . . . . . . . . 10
⊢ ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → (∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦} ↔ ∃𝑦 ∈ 𝑉 {𝑥, 𝑧} = {𝑧, 𝑦})) |
31 | 27, 30 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}))) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) |
32 | 31 | ex 413 |
. . . . . . . 8
⊢ (𝑌 = 𝑧 → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦})) |
33 | 19, 32 | jaoi 854 |
. . . . . . 7
⊢ ((𝑌 = 𝑥 ∨ 𝑌 = 𝑧) → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦})) |
34 | | elpri 4583 |
. . . . . . 7
⊢ (𝑌 ∈ {𝑥, 𝑧} → (𝑌 = 𝑥 ∨ 𝑌 = 𝑧)) |
35 | 33, 34 | syl11 33 |
. . . . . 6
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ {𝑥, 𝑧} → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦})) |
36 | 6, 35 | sylbid 239 |
. . . . 5
⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) ∧ (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ (𝐸‘𝑋) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦})) |
37 | 36 | ex 413 |
. . . 4
⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸‘𝑋) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}))) |
38 | 37 | rexlimdvva 3223 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (∃𝑥 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑥 ≠ 𝑧 ∧ (𝐸‘𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸‘𝑋) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}))) |
39 | 3, 38 | mpd 15 |
. 2
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝑌 ∈ (𝐸‘𝑋) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦})) |
40 | 39 | 3impia 1116 |
1
⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ∧ 𝑌 ∈ (𝐸‘𝑋)) → ∃𝑦 ∈ 𝑉 (𝐸‘𝑋) = {𝑌, 𝑦}) |