MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredg4 Structured version   Visualization version   GIF version

Theorem usgredg4 29144
Description: For a vertex incident to an edge there is another vertex incident to the edge. (Contributed by Alexander van der Vekens, 18-Dec-2017.) (Revised by AV, 17-Oct-2020.)
Hypotheses
Ref Expression
usgredg3.v 𝑉 = (Vtx‘𝐺)
usgredg3.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
usgredg4 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑋   𝑦,𝑌

Proof of Theorem usgredg4
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgredg3.v . . . 4 𝑉 = (Vtx‘𝐺)
2 usgredg3.e . . . 4 𝐸 = (iEdg‘𝐺)
31, 2usgredg3 29143 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → ∃𝑥𝑉𝑧𝑉 (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))
4 eleq2 2817 . . . . . . . 8 ((𝐸𝑋) = {𝑥, 𝑧} → (𝑌 ∈ (𝐸𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧}))
54adantl 481 . . . . . . 7 ((𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧}))
65adantl 481 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ (𝐸𝑋) ↔ 𝑌 ∈ {𝑥, 𝑧}))
7 simplrr 777 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → 𝑧𝑉)
87adantl 481 . . . . . . . . . . 11 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → 𝑧𝑉)
9 preq2 4698 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → {𝑥, 𝑦} = {𝑥, 𝑧})
109eqeq2d 2740 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ({𝑥, 𝑧} = {𝑥, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑧}))
1110adantl 481 . . . . . . . . . . 11 (((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) ∧ 𝑦 = 𝑧) → ({𝑥, 𝑧} = {𝑥, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑧}))
12 eqidd 2730 . . . . . . . . . . 11 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → {𝑥, 𝑧} = {𝑥, 𝑧})
138, 11, 12rspcedvd 3590 . . . . . . . . . 10 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ∃𝑦𝑉 {𝑥, 𝑧} = {𝑥, 𝑦})
14 simprr 772 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → (𝐸𝑋) = {𝑥, 𝑧})
15 preq1 4697 . . . . . . . . . . . 12 (𝑌 = 𝑥 → {𝑌, 𝑦} = {𝑥, 𝑦})
1614, 15eqeqan12rd 2744 . . . . . . . . . . 11 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ((𝐸𝑋) = {𝑌, 𝑦} ↔ {𝑥, 𝑧} = {𝑥, 𝑦}))
1716rexbidv 3157 . . . . . . . . . 10 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → (∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦} ↔ ∃𝑦𝑉 {𝑥, 𝑧} = {𝑥, 𝑦}))
1813, 17mpbird 257 . . . . . . . . 9 ((𝑌 = 𝑥 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
1918ex 412 . . . . . . . 8 (𝑌 = 𝑥 → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
20 simplrl 776 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → 𝑥𝑉)
2120adantl 481 . . . . . . . . . . 11 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → 𝑥𝑉)
22 preq2 4698 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → {𝑧, 𝑦} = {𝑧, 𝑥})
2322eqeq2d 2740 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ({𝑥, 𝑧} = {𝑧, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑥}))
2423adantl 481 . . . . . . . . . . 11 (((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) ∧ 𝑦 = 𝑥) → ({𝑥, 𝑧} = {𝑧, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑥}))
25 prcom 4696 . . . . . . . . . . . 12 {𝑥, 𝑧} = {𝑧, 𝑥}
2625a1i 11 . . . . . . . . . . 11 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → {𝑥, 𝑧} = {𝑧, 𝑥})
2721, 24, 26rspcedvd 3590 . . . . . . . . . 10 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ∃𝑦𝑉 {𝑥, 𝑧} = {𝑧, 𝑦})
28 preq1 4697 . . . . . . . . . . . 12 (𝑌 = 𝑧 → {𝑌, 𝑦} = {𝑧, 𝑦})
2914, 28eqeqan12rd 2744 . . . . . . . . . . 11 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ((𝐸𝑋) = {𝑌, 𝑦} ↔ {𝑥, 𝑧} = {𝑧, 𝑦}))
3029rexbidv 3157 . . . . . . . . . 10 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → (∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦} ↔ ∃𝑦𝑉 {𝑥, 𝑧} = {𝑧, 𝑦}))
3127, 30mpbird 257 . . . . . . . . 9 ((𝑌 = 𝑧 ∧ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}))) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
3231ex 412 . . . . . . . 8 (𝑌 = 𝑧 → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
3319, 32jaoi 857 . . . . . . 7 ((𝑌 = 𝑥𝑌 = 𝑧) → ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
34 elpri 4613 . . . . . . 7 (𝑌 ∈ {𝑥, 𝑧} → (𝑌 = 𝑥𝑌 = 𝑧))
3533, 34syl11 33 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ {𝑥, 𝑧} → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
366, 35sylbid 240 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) ∧ (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧})) → (𝑌 ∈ (𝐸𝑋) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
3736ex 412 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) ∧ (𝑥𝑉𝑧𝑉)) → ((𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸𝑋) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})))
3837rexlimdvva 3194 . . 3 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (∃𝑥𝑉𝑧𝑉 (𝑥𝑧 ∧ (𝐸𝑋) = {𝑥, 𝑧}) → (𝑌 ∈ (𝐸𝑋) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})))
393, 38mpd 15 . 2 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸) → (𝑌 ∈ (𝐸𝑋) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦}))
40393impia 1117 1 ((𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸𝑌 ∈ (𝐸𝑋)) → ∃𝑦𝑉 (𝐸𝑋) = {𝑌, 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {cpr 4591  dom cdm 5638  cfv 6511  Vtxcvtx 28923  iEdgciedg 28924  USGraphcusgr 29076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-edg 28975  df-umgr 29010  df-usgr 29078
This theorem is referenced by:  usgredgreu  29145
  Copyright terms: Public domain W3C validator