| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wwlktovf | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for wrd2f1tovbij 14926. (Contributed by Alexander van der Vekens, 27-Jul-2018.) |
| Ref | Expression |
|---|---|
| wwlktovf1o.d | ⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} |
| wwlktovf1o.r | ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} |
| wwlktovf1o.f | ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) |
| Ref | Expression |
|---|---|
| wwlktovf | ⊢ 𝐹:𝐷⟶𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlktovf1o.f | . 2 ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) | |
| 2 | wrdf 14483 | . . . . 5 ⊢ (𝑡 ∈ Word 𝑉 → 𝑡:(0..^(♯‘𝑡))⟶𝑉) | |
| 3 | oveq2 7395 | . . . . . . . 8 ⊢ ((♯‘𝑡) = 2 → (0..^(♯‘𝑡)) = (0..^2)) | |
| 4 | 3 | feq2d 6672 | . . . . . . 7 ⊢ ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉 ↔ 𝑡:(0..^2)⟶𝑉)) |
| 5 | 1nn0 12458 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
| 6 | 2nn 12259 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
| 7 | 1lt2 12352 | . . . . . . . . 9 ⊢ 1 < 2 | |
| 8 | elfzo0 13661 | . . . . . . . . 9 ⊢ (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2)) | |
| 9 | 5, 6, 7, 8 | mpbir3an 1342 | . . . . . . . 8 ⊢ 1 ∈ (0..^2) |
| 10 | ffvelcdm 7053 | . . . . . . . 8 ⊢ ((𝑡:(0..^2)⟶𝑉 ∧ 1 ∈ (0..^2)) → (𝑡‘1) ∈ 𝑉) | |
| 11 | 9, 10 | mpan2 691 | . . . . . . 7 ⊢ (𝑡:(0..^2)⟶𝑉 → (𝑡‘1) ∈ 𝑉) |
| 12 | 4, 11 | biimtrdi 253 | . . . . . 6 ⊢ ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉)) |
| 13 | 12 | 3ad2ant1 1133 | . . . . 5 ⊢ (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉)) |
| 14 | 2, 13 | mpan9 506 | . . . 4 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → (𝑡‘1) ∈ 𝑉) |
| 15 | preq1 4697 | . . . . . . . 8 ⊢ ((𝑡‘0) = 𝑃 → {(𝑡‘0), (𝑡‘1)} = {𝑃, (𝑡‘1)}) | |
| 16 | 15 | eleq1d 2813 | . . . . . . 7 ⊢ ((𝑡‘0) = 𝑃 → ({(𝑡‘0), (𝑡‘1)} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
| 17 | 16 | biimpa 476 | . . . . . 6 ⊢ (((𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
| 18 | 17 | 3adant1 1130 | . . . . 5 ⊢ (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
| 19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
| 20 | 14, 19 | jca 511 | . . 3 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
| 21 | fveqeq2 6867 | . . . . 5 ⊢ (𝑤 = 𝑡 → ((♯‘𝑤) = 2 ↔ (♯‘𝑡) = 2)) | |
| 22 | fveq1 6857 | . . . . . 6 ⊢ (𝑤 = 𝑡 → (𝑤‘0) = (𝑡‘0)) | |
| 23 | 22 | eqeq1d 2731 | . . . . 5 ⊢ (𝑤 = 𝑡 → ((𝑤‘0) = 𝑃 ↔ (𝑡‘0) = 𝑃)) |
| 24 | fveq1 6857 | . . . . . . 7 ⊢ (𝑤 = 𝑡 → (𝑤‘1) = (𝑡‘1)) | |
| 25 | 22, 24 | preq12d 4705 | . . . . . 6 ⊢ (𝑤 = 𝑡 → {(𝑤‘0), (𝑤‘1)} = {(𝑡‘0), (𝑡‘1)}) |
| 26 | 25 | eleq1d 2813 | . . . . 5 ⊢ (𝑤 = 𝑡 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) |
| 27 | 21, 23, 26 | 3anbi123d 1438 | . . . 4 ⊢ (𝑤 = 𝑡 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋))) |
| 28 | wwlktovf1o.d | . . . 4 ⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} | |
| 29 | 27, 28 | elrab2 3662 | . . 3 ⊢ (𝑡 ∈ 𝐷 ↔ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋))) |
| 30 | preq2 4698 | . . . . 5 ⊢ (𝑛 = (𝑡‘1) → {𝑃, 𝑛} = {𝑃, (𝑡‘1)}) | |
| 31 | 30 | eleq1d 2813 | . . . 4 ⊢ (𝑛 = (𝑡‘1) → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
| 32 | wwlktovf1o.r | . . . 4 ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} | |
| 33 | 31, 32 | elrab2 3662 | . . 3 ⊢ ((𝑡‘1) ∈ 𝑅 ↔ ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
| 34 | 20, 29, 33 | 3imtr4i 292 | . 2 ⊢ (𝑡 ∈ 𝐷 → (𝑡‘1) ∈ 𝑅) |
| 35 | 1, 34 | fmpti 7084 | 1 ⊢ 𝐹:𝐷⟶𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 {cpr 4591 class class class wbr 5107 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 < clt 11208 ℕcn 12186 2c2 12241 ℕ0cn0 12442 ..^cfzo 13615 ♯chash 14295 Word cword 14478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 |
| This theorem is referenced by: wwlktovf1 14923 wwlktovfo 14924 |
| Copyright terms: Public domain | W3C validator |