Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wwlktovf | Structured version Visualization version GIF version |
Description: Lemma 1 for wrd2f1tovbij 14603. (Contributed by Alexander van der Vekens, 27-Jul-2018.) |
Ref | Expression |
---|---|
wwlktovf1o.d | ⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} |
wwlktovf1o.r | ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} |
wwlktovf1o.f | ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) |
Ref | Expression |
---|---|
wwlktovf | ⊢ 𝐹:𝐷⟶𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlktovf1o.f | . 2 ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) | |
2 | wrdf 14150 | . . . . 5 ⊢ (𝑡 ∈ Word 𝑉 → 𝑡:(0..^(♯‘𝑡))⟶𝑉) | |
3 | oveq2 7263 | . . . . . . . 8 ⊢ ((♯‘𝑡) = 2 → (0..^(♯‘𝑡)) = (0..^2)) | |
4 | 3 | feq2d 6570 | . . . . . . 7 ⊢ ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉 ↔ 𝑡:(0..^2)⟶𝑉)) |
5 | 1nn0 12179 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
6 | 2nn 11976 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
7 | 1lt2 12074 | . . . . . . . . 9 ⊢ 1 < 2 | |
8 | elfzo0 13356 | . . . . . . . . 9 ⊢ (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2)) | |
9 | 5, 6, 7, 8 | mpbir3an 1339 | . . . . . . . 8 ⊢ 1 ∈ (0..^2) |
10 | ffvelrn 6941 | . . . . . . . 8 ⊢ ((𝑡:(0..^2)⟶𝑉 ∧ 1 ∈ (0..^2)) → (𝑡‘1) ∈ 𝑉) | |
11 | 9, 10 | mpan2 687 | . . . . . . 7 ⊢ (𝑡:(0..^2)⟶𝑉 → (𝑡‘1) ∈ 𝑉) |
12 | 4, 11 | syl6bi 252 | . . . . . 6 ⊢ ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉)) |
13 | 12 | 3ad2ant1 1131 | . . . . 5 ⊢ (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉)) |
14 | 2, 13 | mpan9 506 | . . . 4 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → (𝑡‘1) ∈ 𝑉) |
15 | preq1 4666 | . . . . . . . 8 ⊢ ((𝑡‘0) = 𝑃 → {(𝑡‘0), (𝑡‘1)} = {𝑃, (𝑡‘1)}) | |
16 | 15 | eleq1d 2823 | . . . . . . 7 ⊢ ((𝑡‘0) = 𝑃 → ({(𝑡‘0), (𝑡‘1)} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
17 | 16 | biimpa 476 | . . . . . 6 ⊢ (((𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
18 | 17 | 3adant1 1128 | . . . . 5 ⊢ (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
19 | 18 | adantl 481 | . . . 4 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
20 | 14, 19 | jca 511 | . . 3 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
21 | fveqeq2 6765 | . . . . 5 ⊢ (𝑤 = 𝑡 → ((♯‘𝑤) = 2 ↔ (♯‘𝑡) = 2)) | |
22 | fveq1 6755 | . . . . . 6 ⊢ (𝑤 = 𝑡 → (𝑤‘0) = (𝑡‘0)) | |
23 | 22 | eqeq1d 2740 | . . . . 5 ⊢ (𝑤 = 𝑡 → ((𝑤‘0) = 𝑃 ↔ (𝑡‘0) = 𝑃)) |
24 | fveq1 6755 | . . . . . . 7 ⊢ (𝑤 = 𝑡 → (𝑤‘1) = (𝑡‘1)) | |
25 | 22, 24 | preq12d 4674 | . . . . . 6 ⊢ (𝑤 = 𝑡 → {(𝑤‘0), (𝑤‘1)} = {(𝑡‘0), (𝑡‘1)}) |
26 | 25 | eleq1d 2823 | . . . . 5 ⊢ (𝑤 = 𝑡 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) |
27 | 21, 23, 26 | 3anbi123d 1434 | . . . 4 ⊢ (𝑤 = 𝑡 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋))) |
28 | wwlktovf1o.d | . . . 4 ⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} | |
29 | 27, 28 | elrab2 3620 | . . 3 ⊢ (𝑡 ∈ 𝐷 ↔ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋))) |
30 | preq2 4667 | . . . . 5 ⊢ (𝑛 = (𝑡‘1) → {𝑃, 𝑛} = {𝑃, (𝑡‘1)}) | |
31 | 30 | eleq1d 2823 | . . . 4 ⊢ (𝑛 = (𝑡‘1) → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
32 | wwlktovf1o.r | . . . 4 ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} | |
33 | 31, 32 | elrab2 3620 | . . 3 ⊢ ((𝑡‘1) ∈ 𝑅 ↔ ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
34 | 20, 29, 33 | 3imtr4i 291 | . 2 ⊢ (𝑡 ∈ 𝐷 → (𝑡‘1) ∈ 𝑅) |
35 | 1, 34 | fmpti 6968 | 1 ⊢ 𝐹:𝐷⟶𝑅 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 {cpr 4560 class class class wbr 5070 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 < clt 10940 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ..^cfzo 13311 ♯chash 13972 Word cword 14145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 |
This theorem is referenced by: wwlktovf1 14600 wwlktovfo 14601 |
Copyright terms: Public domain | W3C validator |