MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlktovf Structured version   Visualization version   GIF version

Theorem wwlktovf 14975
Description: Lemma 1 for wrd2f1tovbij 14979. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
Hypotheses
Ref Expression
wwlktovf1o.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
wwlktovf1o.r 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
wwlktovf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
Assertion
Ref Expression
wwlktovf 𝐹:𝐷𝑅
Distinct variable groups:   𝑡,𝐷   𝑃,𝑛,𝑡,𝑤   𝑡,𝑅   𝑛,𝑉,𝑡,𝑤   𝑛,𝑋,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐹(𝑤,𝑡,𝑛)   𝑋(𝑡)

Proof of Theorem wwlktovf
StepHypRef Expression
1 wwlktovf1o.f . 2 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
2 wrdf 14536 . . . . 5 (𝑡 ∈ Word 𝑉𝑡:(0..^(♯‘𝑡))⟶𝑉)
3 oveq2 7413 . . . . . . . 8 ((♯‘𝑡) = 2 → (0..^(♯‘𝑡)) = (0..^2))
43feq2d 6692 . . . . . . 7 ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉𝑡:(0..^2)⟶𝑉))
5 1nn0 12517 . . . . . . . . 9 1 ∈ ℕ0
6 2nn 12313 . . . . . . . . 9 2 ∈ ℕ
7 1lt2 12411 . . . . . . . . 9 1 < 2
8 elfzo0 13717 . . . . . . . . 9 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
95, 6, 7, 8mpbir3an 1342 . . . . . . . 8 1 ∈ (0..^2)
10 ffvelcdm 7071 . . . . . . . 8 ((𝑡:(0..^2)⟶𝑉 ∧ 1 ∈ (0..^2)) → (𝑡‘1) ∈ 𝑉)
119, 10mpan2 691 . . . . . . 7 (𝑡:(0..^2)⟶𝑉 → (𝑡‘1) ∈ 𝑉)
124, 11biimtrdi 253 . . . . . 6 ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉))
13123ad2ant1 1133 . . . . 5 (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉))
142, 13mpan9 506 . . . 4 ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → (𝑡‘1) ∈ 𝑉)
15 preq1 4709 . . . . . . . 8 ((𝑡‘0) = 𝑃 → {(𝑡‘0), (𝑡‘1)} = {𝑃, (𝑡‘1)})
1615eleq1d 2819 . . . . . . 7 ((𝑡‘0) = 𝑃 → ({(𝑡‘0), (𝑡‘1)} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋))
1716biimpa 476 . . . . . 6 (((𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋)
18173adant1 1130 . . . . 5 (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋)
1918adantl 481 . . . 4 ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → {𝑃, (𝑡‘1)} ∈ 𝑋)
2014, 19jca 511 . . 3 ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋))
21 fveqeq2 6885 . . . . 5 (𝑤 = 𝑡 → ((♯‘𝑤) = 2 ↔ (♯‘𝑡) = 2))
22 fveq1 6875 . . . . . 6 (𝑤 = 𝑡 → (𝑤‘0) = (𝑡‘0))
2322eqeq1d 2737 . . . . 5 (𝑤 = 𝑡 → ((𝑤‘0) = 𝑃 ↔ (𝑡‘0) = 𝑃))
24 fveq1 6875 . . . . . . 7 (𝑤 = 𝑡 → (𝑤‘1) = (𝑡‘1))
2522, 24preq12d 4717 . . . . . 6 (𝑤 = 𝑡 → {(𝑤‘0), (𝑤‘1)} = {(𝑡‘0), (𝑡‘1)})
2625eleq1d 2819 . . . . 5 (𝑤 = 𝑡 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋))
2721, 23, 263anbi123d 1438 . . . 4 (𝑤 = 𝑡 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)))
28 wwlktovf1o.d . . . 4 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
2927, 28elrab2 3674 . . 3 (𝑡𝐷 ↔ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)))
30 preq2 4710 . . . . 5 (𝑛 = (𝑡‘1) → {𝑃, 𝑛} = {𝑃, (𝑡‘1)})
3130eleq1d 2819 . . . 4 (𝑛 = (𝑡‘1) → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋))
32 wwlktovf1o.r . . . 4 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
3331, 32elrab2 3674 . . 3 ((𝑡‘1) ∈ 𝑅 ↔ ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋))
3420, 29, 333imtr4i 292 . 2 (𝑡𝐷 → (𝑡‘1) ∈ 𝑅)
351, 34fmpti 7102 1 𝐹:𝐷𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  {crab 3415  {cpr 4603   class class class wbr 5119  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   < clt 11269  cn 12240  2c2 12295  0cn0 12501  ..^cfzo 13671  chash 14348  Word cword 14531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532
This theorem is referenced by:  wwlktovf1  14976  wwlktovfo  14977
  Copyright terms: Public domain W3C validator