MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlktovf Structured version   Visualization version   GIF version

Theorem wwlktovf 14922
Description: Lemma 1 for wrd2f1tovbij 14926. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
Hypotheses
Ref Expression
wwlktovf1o.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
wwlktovf1o.r 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
wwlktovf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
Assertion
Ref Expression
wwlktovf 𝐹:𝐷𝑅
Distinct variable groups:   𝑡,𝐷   𝑃,𝑛,𝑡,𝑤   𝑡,𝑅   𝑛,𝑉,𝑡,𝑤   𝑛,𝑋,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐹(𝑤,𝑡,𝑛)   𝑋(𝑡)

Proof of Theorem wwlktovf
StepHypRef Expression
1 wwlktovf1o.f . 2 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
2 wrdf 14483 . . . . 5 (𝑡 ∈ Word 𝑉𝑡:(0..^(♯‘𝑡))⟶𝑉)
3 oveq2 7395 . . . . . . . 8 ((♯‘𝑡) = 2 → (0..^(♯‘𝑡)) = (0..^2))
43feq2d 6672 . . . . . . 7 ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉𝑡:(0..^2)⟶𝑉))
5 1nn0 12458 . . . . . . . . 9 1 ∈ ℕ0
6 2nn 12259 . . . . . . . . 9 2 ∈ ℕ
7 1lt2 12352 . . . . . . . . 9 1 < 2
8 elfzo0 13661 . . . . . . . . 9 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
95, 6, 7, 8mpbir3an 1342 . . . . . . . 8 1 ∈ (0..^2)
10 ffvelcdm 7053 . . . . . . . 8 ((𝑡:(0..^2)⟶𝑉 ∧ 1 ∈ (0..^2)) → (𝑡‘1) ∈ 𝑉)
119, 10mpan2 691 . . . . . . 7 (𝑡:(0..^2)⟶𝑉 → (𝑡‘1) ∈ 𝑉)
124, 11biimtrdi 253 . . . . . 6 ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉))
13123ad2ant1 1133 . . . . 5 (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉))
142, 13mpan9 506 . . . 4 ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → (𝑡‘1) ∈ 𝑉)
15 preq1 4697 . . . . . . . 8 ((𝑡‘0) = 𝑃 → {(𝑡‘0), (𝑡‘1)} = {𝑃, (𝑡‘1)})
1615eleq1d 2813 . . . . . . 7 ((𝑡‘0) = 𝑃 → ({(𝑡‘0), (𝑡‘1)} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋))
1716biimpa 476 . . . . . 6 (((𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋)
18173adant1 1130 . . . . 5 (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋)
1918adantl 481 . . . 4 ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → {𝑃, (𝑡‘1)} ∈ 𝑋)
2014, 19jca 511 . . 3 ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋))
21 fveqeq2 6867 . . . . 5 (𝑤 = 𝑡 → ((♯‘𝑤) = 2 ↔ (♯‘𝑡) = 2))
22 fveq1 6857 . . . . . 6 (𝑤 = 𝑡 → (𝑤‘0) = (𝑡‘0))
2322eqeq1d 2731 . . . . 5 (𝑤 = 𝑡 → ((𝑤‘0) = 𝑃 ↔ (𝑡‘0) = 𝑃))
24 fveq1 6857 . . . . . . 7 (𝑤 = 𝑡 → (𝑤‘1) = (𝑡‘1))
2522, 24preq12d 4705 . . . . . 6 (𝑤 = 𝑡 → {(𝑤‘0), (𝑤‘1)} = {(𝑡‘0), (𝑡‘1)})
2625eleq1d 2813 . . . . 5 (𝑤 = 𝑡 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋))
2721, 23, 263anbi123d 1438 . . . 4 (𝑤 = 𝑡 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)))
28 wwlktovf1o.d . . . 4 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
2927, 28elrab2 3662 . . 3 (𝑡𝐷 ↔ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)))
30 preq2 4698 . . . . 5 (𝑛 = (𝑡‘1) → {𝑃, 𝑛} = {𝑃, (𝑡‘1)})
3130eleq1d 2813 . . . 4 (𝑛 = (𝑡‘1) → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋))
32 wwlktovf1o.r . . . 4 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
3331, 32elrab2 3662 . . 3 ((𝑡‘1) ∈ 𝑅 ↔ ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋))
3420, 29, 333imtr4i 292 . 2 (𝑡𝐷 → (𝑡‘1) ∈ 𝑅)
351, 34fmpti 7084 1 𝐹:𝐷𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3405  {cpr 4591   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   < clt 11208  cn 12186  2c2 12241  0cn0 12442  ..^cfzo 13615  chash 14295  Word cword 14478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479
This theorem is referenced by:  wwlktovf1  14923  wwlktovfo  14924
  Copyright terms: Public domain W3C validator