MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlktovf Structured version   Visualization version   GIF version

Theorem wwlktovf 14599
Description: Lemma 1 for wrd2f1tovbij 14603. (Contributed by Alexander van der Vekens, 27-Jul-2018.)
Hypotheses
Ref Expression
wwlktovf1o.d 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
wwlktovf1o.r 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
wwlktovf1o.f 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
Assertion
Ref Expression
wwlktovf 𝐹:𝐷𝑅
Distinct variable groups:   𝑡,𝐷   𝑃,𝑛,𝑡,𝑤   𝑡,𝑅   𝑛,𝑉,𝑡,𝑤   𝑛,𝑋,𝑤
Allowed substitution hints:   𝐷(𝑤,𝑛)   𝑅(𝑤,𝑛)   𝐹(𝑤,𝑡,𝑛)   𝑋(𝑡)

Proof of Theorem wwlktovf
StepHypRef Expression
1 wwlktovf1o.f . 2 𝐹 = (𝑡𝐷 ↦ (𝑡‘1))
2 wrdf 14150 . . . . 5 (𝑡 ∈ Word 𝑉𝑡:(0..^(♯‘𝑡))⟶𝑉)
3 oveq2 7263 . . . . . . . 8 ((♯‘𝑡) = 2 → (0..^(♯‘𝑡)) = (0..^2))
43feq2d 6570 . . . . . . 7 ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉𝑡:(0..^2)⟶𝑉))
5 1nn0 12179 . . . . . . . . 9 1 ∈ ℕ0
6 2nn 11976 . . . . . . . . 9 2 ∈ ℕ
7 1lt2 12074 . . . . . . . . 9 1 < 2
8 elfzo0 13356 . . . . . . . . 9 (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2))
95, 6, 7, 8mpbir3an 1339 . . . . . . . 8 1 ∈ (0..^2)
10 ffvelrn 6941 . . . . . . . 8 ((𝑡:(0..^2)⟶𝑉 ∧ 1 ∈ (0..^2)) → (𝑡‘1) ∈ 𝑉)
119, 10mpan2 687 . . . . . . 7 (𝑡:(0..^2)⟶𝑉 → (𝑡‘1) ∈ 𝑉)
124, 11syl6bi 252 . . . . . 6 ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉))
13123ad2ant1 1131 . . . . 5 (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉))
142, 13mpan9 506 . . . 4 ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → (𝑡‘1) ∈ 𝑉)
15 preq1 4666 . . . . . . . 8 ((𝑡‘0) = 𝑃 → {(𝑡‘0), (𝑡‘1)} = {𝑃, (𝑡‘1)})
1615eleq1d 2823 . . . . . . 7 ((𝑡‘0) = 𝑃 → ({(𝑡‘0), (𝑡‘1)} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋))
1716biimpa 476 . . . . . 6 (((𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋)
18173adant1 1128 . . . . 5 (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋)
1918adantl 481 . . . 4 ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → {𝑃, (𝑡‘1)} ∈ 𝑋)
2014, 19jca 511 . . 3 ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋))
21 fveqeq2 6765 . . . . 5 (𝑤 = 𝑡 → ((♯‘𝑤) = 2 ↔ (♯‘𝑡) = 2))
22 fveq1 6755 . . . . . 6 (𝑤 = 𝑡 → (𝑤‘0) = (𝑡‘0))
2322eqeq1d 2740 . . . . 5 (𝑤 = 𝑡 → ((𝑤‘0) = 𝑃 ↔ (𝑡‘0) = 𝑃))
24 fveq1 6755 . . . . . . 7 (𝑤 = 𝑡 → (𝑤‘1) = (𝑡‘1))
2522, 24preq12d 4674 . . . . . 6 (𝑤 = 𝑡 → {(𝑤‘0), (𝑤‘1)} = {(𝑡‘0), (𝑡‘1)})
2625eleq1d 2823 . . . . 5 (𝑤 = 𝑡 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋))
2721, 23, 263anbi123d 1434 . . . 4 (𝑤 = 𝑡 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)))
28 wwlktovf1o.d . . . 4 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)}
2927, 28elrab2 3620 . . 3 (𝑡𝐷 ↔ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)))
30 preq2 4667 . . . . 5 (𝑛 = (𝑡‘1) → {𝑃, 𝑛} = {𝑃, (𝑡‘1)})
3130eleq1d 2823 . . . 4 (𝑛 = (𝑡‘1) → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋))
32 wwlktovf1o.r . . . 4 𝑅 = {𝑛𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋}
3331, 32elrab2 3620 . . 3 ((𝑡‘1) ∈ 𝑅 ↔ ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋))
3420, 29, 333imtr4i 291 . 2 (𝑡𝐷 → (𝑡‘1) ∈ 𝑅)
351, 34fmpti 6968 1 𝐹:𝐷𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  {cpr 4560   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   < clt 10940  cn 11903  2c2 11958  0cn0 12163  ..^cfzo 13311  chash 13972  Word cword 14145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146
This theorem is referenced by:  wwlktovf1  14600  wwlktovfo  14601
  Copyright terms: Public domain W3C validator