![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlktovf | Structured version Visualization version GIF version |
Description: Lemma 1 for wrd2f1tovbij 14855. (Contributed by Alexander van der Vekens, 27-Jul-2018.) |
Ref | Expression |
---|---|
wwlktovf1o.d | ⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} |
wwlktovf1o.r | ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} |
wwlktovf1o.f | ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) |
Ref | Expression |
---|---|
wwlktovf | ⊢ 𝐹:𝐷⟶𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlktovf1o.f | . 2 ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) | |
2 | wrdf 14413 | . . . . 5 ⊢ (𝑡 ∈ Word 𝑉 → 𝑡:(0..^(♯‘𝑡))⟶𝑉) | |
3 | oveq2 7366 | . . . . . . . 8 ⊢ ((♯‘𝑡) = 2 → (0..^(♯‘𝑡)) = (0..^2)) | |
4 | 3 | feq2d 6655 | . . . . . . 7 ⊢ ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉 ↔ 𝑡:(0..^2)⟶𝑉)) |
5 | 1nn0 12434 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
6 | 2nn 12231 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
7 | 1lt2 12329 | . . . . . . . . 9 ⊢ 1 < 2 | |
8 | elfzo0 13619 | . . . . . . . . 9 ⊢ (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2)) | |
9 | 5, 6, 7, 8 | mpbir3an 1342 | . . . . . . . 8 ⊢ 1 ∈ (0..^2) |
10 | ffvelcdm 7033 | . . . . . . . 8 ⊢ ((𝑡:(0..^2)⟶𝑉 ∧ 1 ∈ (0..^2)) → (𝑡‘1) ∈ 𝑉) | |
11 | 9, 10 | mpan2 690 | . . . . . . 7 ⊢ (𝑡:(0..^2)⟶𝑉 → (𝑡‘1) ∈ 𝑉) |
12 | 4, 11 | syl6bi 253 | . . . . . 6 ⊢ ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉)) |
13 | 12 | 3ad2ant1 1134 | . . . . 5 ⊢ (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉)) |
14 | 2, 13 | mpan9 508 | . . . 4 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → (𝑡‘1) ∈ 𝑉) |
15 | preq1 4695 | . . . . . . . 8 ⊢ ((𝑡‘0) = 𝑃 → {(𝑡‘0), (𝑡‘1)} = {𝑃, (𝑡‘1)}) | |
16 | 15 | eleq1d 2819 | . . . . . . 7 ⊢ ((𝑡‘0) = 𝑃 → ({(𝑡‘0), (𝑡‘1)} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
17 | 16 | biimpa 478 | . . . . . 6 ⊢ (((𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
18 | 17 | 3adant1 1131 | . . . . 5 ⊢ (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
19 | 18 | adantl 483 | . . . 4 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
20 | 14, 19 | jca 513 | . . 3 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
21 | fveqeq2 6852 | . . . . 5 ⊢ (𝑤 = 𝑡 → ((♯‘𝑤) = 2 ↔ (♯‘𝑡) = 2)) | |
22 | fveq1 6842 | . . . . . 6 ⊢ (𝑤 = 𝑡 → (𝑤‘0) = (𝑡‘0)) | |
23 | 22 | eqeq1d 2735 | . . . . 5 ⊢ (𝑤 = 𝑡 → ((𝑤‘0) = 𝑃 ↔ (𝑡‘0) = 𝑃)) |
24 | fveq1 6842 | . . . . . . 7 ⊢ (𝑤 = 𝑡 → (𝑤‘1) = (𝑡‘1)) | |
25 | 22, 24 | preq12d 4703 | . . . . . 6 ⊢ (𝑤 = 𝑡 → {(𝑤‘0), (𝑤‘1)} = {(𝑡‘0), (𝑡‘1)}) |
26 | 25 | eleq1d 2819 | . . . . 5 ⊢ (𝑤 = 𝑡 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) |
27 | 21, 23, 26 | 3anbi123d 1437 | . . . 4 ⊢ (𝑤 = 𝑡 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋))) |
28 | wwlktovf1o.d | . . . 4 ⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} | |
29 | 27, 28 | elrab2 3649 | . . 3 ⊢ (𝑡 ∈ 𝐷 ↔ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋))) |
30 | preq2 4696 | . . . . 5 ⊢ (𝑛 = (𝑡‘1) → {𝑃, 𝑛} = {𝑃, (𝑡‘1)}) | |
31 | 30 | eleq1d 2819 | . . . 4 ⊢ (𝑛 = (𝑡‘1) → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
32 | wwlktovf1o.r | . . . 4 ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} | |
33 | 31, 32 | elrab2 3649 | . . 3 ⊢ ((𝑡‘1) ∈ 𝑅 ↔ ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
34 | 20, 29, 33 | 3imtr4i 292 | . 2 ⊢ (𝑡 ∈ 𝐷 → (𝑡‘1) ∈ 𝑅) |
35 | 1, 34 | fmpti 7061 | 1 ⊢ 𝐹:𝐷⟶𝑅 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 {crab 3406 {cpr 4589 class class class wbr 5106 ↦ cmpt 5189 ⟶wf 6493 ‘cfv 6497 (class class class)co 7358 0cc0 11056 1c1 11057 < clt 11194 ℕcn 12158 2c2 12213 ℕ0cn0 12418 ..^cfzo 13573 ♯chash 14236 Word cword 14408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-n0 12419 df-z 12505 df-uz 12769 df-fz 13431 df-fzo 13574 df-hash 14237 df-word 14409 |
This theorem is referenced by: wwlktovf1 14852 wwlktovfo 14853 |
Copyright terms: Public domain | W3C validator |