![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopregasn | Structured version Visualization version GIF version |
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 27700 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
frgrwopreg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrwopregasn | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrwopreg.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
3 | frgrwopreg.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
4 | frgrwopreg.b | . . . 4 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
5 | frgrwopreg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1, 2, 3, 4, 5 | frgrwopreglem4 27697 | . . 3 ⊢ (𝐺 ∈ FriendGraph → ∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸) |
7 | snidg 4428 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
8 | 7 | adantr 474 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → 𝑋 ∈ {𝑋}) |
9 | eleq2 2896 | . . . . . . 7 ⊢ (𝐴 = {𝑋} → (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ {𝑋})) | |
10 | 9 | adantl 475 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ {𝑋})) |
11 | 8, 10 | mpbird 249 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → 𝑋 ∈ 𝐴) |
12 | preq1 4487 | . . . . . . . 8 ⊢ (𝑣 = 𝑋 → {𝑣, 𝑤} = {𝑋, 𝑤}) | |
13 | 12 | eleq1d 2892 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → ({𝑣, 𝑤} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸)) |
14 | 13 | ralbidv 3196 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸)) |
15 | 14 | rspcv 3523 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸)) |
16 | 11, 15 | syl 17 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸)) |
17 | difeq2 3950 | . . . . . . 7 ⊢ (𝐴 = {𝑋} → (𝑉 ∖ 𝐴) = (𝑉 ∖ {𝑋})) | |
18 | 4, 17 | syl5eq 2874 | . . . . . 6 ⊢ (𝐴 = {𝑋} → 𝐵 = (𝑉 ∖ {𝑋})) |
19 | 18 | adantl 475 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → 𝐵 = (𝑉 ∖ {𝑋})) |
20 | 19 | raleqdv 3357 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
21 | 16, 20 | sylibd 231 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
22 | 6, 21 | syl5com 31 | . 2 ⊢ (𝐺 ∈ FriendGraph → ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
23 | 22 | 3impib 1150 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∀wral 3118 {crab 3122 ∖ cdif 3796 {csn 4398 {cpr 4400 ‘cfv 6124 Vtxcvtx 26295 Edgcedg 26346 VtxDegcvtxdg 26764 FriendGraph cfrgr 27638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-2o 7828 df-oadd 7831 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-card 9079 df-cda 9306 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-n0 11620 df-xnn0 11692 df-z 11706 df-uz 11970 df-xadd 12234 df-fz 12621 df-hash 13412 df-edg 26347 df-uhgr 26357 df-ushgr 26358 df-upgr 26381 df-umgr 26382 df-uspgr 26450 df-usgr 26451 df-nbgr 26631 df-vtxdg 26765 df-frgr 27639 |
This theorem is referenced by: frgrwopreg1 27700 |
Copyright terms: Public domain | W3C validator |