Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgrwopregasn | Structured version Visualization version GIF version |
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 28583 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
frgrwopreg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrwopregasn | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrwopreg.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
3 | frgrwopreg.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
4 | frgrwopreg.b | . . . 4 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
5 | frgrwopreg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1, 2, 3, 4, 5 | frgrwopreglem4 28580 | . . 3 ⊢ (𝐺 ∈ FriendGraph → ∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸) |
7 | snidg 4592 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → 𝑋 ∈ {𝑋}) |
9 | eleq2 2827 | . . . . . . 7 ⊢ (𝐴 = {𝑋} → (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ {𝑋})) | |
10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ {𝑋})) |
11 | 8, 10 | mpbird 256 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → 𝑋 ∈ 𝐴) |
12 | preq1 4666 | . . . . . . . 8 ⊢ (𝑣 = 𝑋 → {𝑣, 𝑤} = {𝑋, 𝑤}) | |
13 | 12 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → ({𝑣, 𝑤} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸)) |
14 | 13 | ralbidv 3120 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸)) |
15 | 14 | rspcv 3547 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸)) |
16 | 11, 15 | syl 17 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸)) |
17 | difeq2 4047 | . . . . . . 7 ⊢ (𝐴 = {𝑋} → (𝑉 ∖ 𝐴) = (𝑉 ∖ {𝑋})) | |
18 | 4, 17 | syl5eq 2791 | . . . . . 6 ⊢ (𝐴 = {𝑋} → 𝐵 = (𝑉 ∖ {𝑋})) |
19 | 18 | adantl 481 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → 𝐵 = (𝑉 ∖ {𝑋})) |
20 | 19 | raleqdv 3339 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
21 | 16, 20 | sylibd 238 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
22 | 6, 21 | syl5com 31 | . 2 ⊢ (𝐺 ∈ FriendGraph → ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
23 | 22 | 3impib 1114 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∖ cdif 3880 {csn 4558 {cpr 4560 ‘cfv 6418 Vtxcvtx 27269 Edgcedg 27320 VtxDegcvtxdg 27735 FriendGraph cfrgr 28523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-xadd 12778 df-fz 13169 df-hash 13973 df-edg 27321 df-uhgr 27331 df-ushgr 27332 df-upgr 27355 df-umgr 27356 df-uspgr 27423 df-usgr 27424 df-nbgr 27603 df-vtxdg 27736 df-frgr 28524 |
This theorem is referenced by: frgrwopreg1 28583 |
Copyright terms: Public domain | W3C validator |