![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopregasn | Structured version Visualization version GIF version |
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 29560 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | β’ π = (VtxβπΊ) |
frgrwopreg.d | β’ π· = (VtxDegβπΊ) |
frgrwopreg.a | β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} |
frgrwopreg.b | β’ π΅ = (π β π΄) |
frgrwopreg.e | β’ πΈ = (EdgβπΊ) |
Ref | Expression |
---|---|
frgrwopregasn | β’ ((πΊ β FriendGraph β§ π β π β§ π΄ = {π}) β βπ€ β (π β {π}){π, π€} β πΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . . 4 β’ π = (VtxβπΊ) | |
2 | frgrwopreg.d | . . . 4 β’ π· = (VtxDegβπΊ) | |
3 | frgrwopreg.a | . . . 4 β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} | |
4 | frgrwopreg.b | . . . 4 β’ π΅ = (π β π΄) | |
5 | frgrwopreg.e | . . . 4 β’ πΈ = (EdgβπΊ) | |
6 | 1, 2, 3, 4, 5 | frgrwopreglem4 29557 | . . 3 β’ (πΊ β FriendGraph β βπ£ β π΄ βπ€ β π΅ {π£, π€} β πΈ) |
7 | snidg 4661 | . . . . . . 7 β’ (π β π β π β {π}) | |
8 | 7 | adantr 481 | . . . . . 6 β’ ((π β π β§ π΄ = {π}) β π β {π}) |
9 | eleq2 2822 | . . . . . . 7 β’ (π΄ = {π} β (π β π΄ β π β {π})) | |
10 | 9 | adantl 482 | . . . . . 6 β’ ((π β π β§ π΄ = {π}) β (π β π΄ β π β {π})) |
11 | 8, 10 | mpbird 256 | . . . . 5 β’ ((π β π β§ π΄ = {π}) β π β π΄) |
12 | preq1 4736 | . . . . . . . 8 β’ (π£ = π β {π£, π€} = {π, π€}) | |
13 | 12 | eleq1d 2818 | . . . . . . 7 β’ (π£ = π β ({π£, π€} β πΈ β {π, π€} β πΈ)) |
14 | 13 | ralbidv 3177 | . . . . . 6 β’ (π£ = π β (βπ€ β π΅ {π£, π€} β πΈ β βπ€ β π΅ {π, π€} β πΈ)) |
15 | 14 | rspcv 3608 | . . . . 5 β’ (π β π΄ β (βπ£ β π΄ βπ€ β π΅ {π£, π€} β πΈ β βπ€ β π΅ {π, π€} β πΈ)) |
16 | 11, 15 | syl 17 | . . . 4 β’ ((π β π β§ π΄ = {π}) β (βπ£ β π΄ βπ€ β π΅ {π£, π€} β πΈ β βπ€ β π΅ {π, π€} β πΈ)) |
17 | difeq2 4115 | . . . . . . 7 β’ (π΄ = {π} β (π β π΄) = (π β {π})) | |
18 | 4, 17 | eqtrid 2784 | . . . . . 6 β’ (π΄ = {π} β π΅ = (π β {π})) |
19 | 18 | adantl 482 | . . . . 5 β’ ((π β π β§ π΄ = {π}) β π΅ = (π β {π})) |
20 | 19 | raleqdv 3325 | . . . 4 β’ ((π β π β§ π΄ = {π}) β (βπ€ β π΅ {π, π€} β πΈ β βπ€ β (π β {π}){π, π€} β πΈ)) |
21 | 16, 20 | sylibd 238 | . . 3 β’ ((π β π β§ π΄ = {π}) β (βπ£ β π΄ βπ€ β π΅ {π£, π€} β πΈ β βπ€ β (π β {π}){π, π€} β πΈ)) |
22 | 6, 21 | syl5com 31 | . 2 β’ (πΊ β FriendGraph β ((π β π β§ π΄ = {π}) β βπ€ β (π β {π}){π, π€} β πΈ)) |
23 | 22 | 3impib 1116 | 1 β’ ((πΊ β FriendGraph β§ π β π β§ π΄ = {π}) β βπ€ β (π β {π}){π, π€} β πΈ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 {crab 3432 β cdif 3944 {csn 4627 {cpr 4629 βcfv 6540 Vtxcvtx 28245 Edgcedg 28296 VtxDegcvtxdg 28711 FriendGraph cfrgr 29500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-xadd 13089 df-fz 13481 df-hash 14287 df-edg 28297 df-uhgr 28307 df-ushgr 28308 df-upgr 28331 df-umgr 28332 df-uspgr 28399 df-usgr 28400 df-nbgr 28579 df-vtxdg 28712 df-frgr 29501 |
This theorem is referenced by: frgrwopreg1 29560 |
Copyright terms: Public domain | W3C validator |