MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopregasn Structured version   Visualization version   GIF version

Theorem frgrwopregasn 30144
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 30146 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopregasn ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝑋   𝑥,𝐵   𝑤,𝐴   𝑤,𝐵   𝑤,𝐺,𝑥   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐷(𝑤)   𝐸(𝑥,𝑤)   𝐾(𝑤)

Proof of Theorem frgrwopregasn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . . 4 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . . 4 𝐵 = (𝑉𝐴)
5 frgrwopreg.e . . . 4 𝐸 = (Edg‘𝐺)
61, 2, 3, 4, 5frgrwopreglem4 30143 . . 3 (𝐺 ∈ FriendGraph → ∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸)
7 snidg 4665 . . . . . . 7 (𝑋𝑉𝑋 ∈ {𝑋})
87adantr 479 . . . . . 6 ((𝑋𝑉𝐴 = {𝑋}) → 𝑋 ∈ {𝑋})
9 eleq2 2817 . . . . . . 7 (𝐴 = {𝑋} → (𝑋𝐴𝑋 ∈ {𝑋}))
109adantl 480 . . . . . 6 ((𝑋𝑉𝐴 = {𝑋}) → (𝑋𝐴𝑋 ∈ {𝑋}))
118, 10mpbird 256 . . . . 5 ((𝑋𝑉𝐴 = {𝑋}) → 𝑋𝐴)
12 preq1 4740 . . . . . . . 8 (𝑣 = 𝑋 → {𝑣, 𝑤} = {𝑋, 𝑤})
1312eleq1d 2813 . . . . . . 7 (𝑣 = 𝑋 → ({𝑣, 𝑤} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸))
1413ralbidv 3173 . . . . . 6 (𝑣 = 𝑋 → (∀𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 ↔ ∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸))
1514rspcv 3605 . . . . 5 (𝑋𝐴 → (∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸))
1611, 15syl 17 . . . 4 ((𝑋𝑉𝐴 = {𝑋}) → (∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸))
17 difeq2 4114 . . . . . . 7 (𝐴 = {𝑋} → (𝑉𝐴) = (𝑉 ∖ {𝑋}))
184, 17eqtrid 2779 . . . . . 6 (𝐴 = {𝑋} → 𝐵 = (𝑉 ∖ {𝑋}))
1918adantl 480 . . . . 5 ((𝑋𝑉𝐴 = {𝑋}) → 𝐵 = (𝑉 ∖ {𝑋}))
2019raleqdv 3321 . . . 4 ((𝑋𝑉𝐴 = {𝑋}) → (∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
2116, 20sylibd 238 . . 3 ((𝑋𝑉𝐴 = {𝑋}) → (∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
226, 21syl5com 31 . 2 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
23223impib 1113 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3057  {crab 3428  cdif 3944  {csn 4630  {cpr 4632  cfv 6551  Vtxcvtx 28827  Edgcedg 28878  VtxDegcvtxdg 29297   FriendGraph cfrgr 30086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-oadd 8495  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-dju 9930  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-n0 12509  df-xnn0 12581  df-z 12595  df-uz 12859  df-xadd 13131  df-fz 13523  df-hash 14328  df-edg 28879  df-uhgr 28889  df-ushgr 28890  df-upgr 28913  df-umgr 28914  df-uspgr 28981  df-usgr 28982  df-nbgr 29164  df-vtxdg 29298  df-frgr 30087
This theorem is referenced by:  frgrwopreg1  30146
  Copyright terms: Public domain W3C validator