![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopregasn | Structured version Visualization version GIF version |
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 30350 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
frgrwopreg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrwopregasn | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrwopreg.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
3 | frgrwopreg.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
4 | frgrwopreg.b | . . . 4 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
5 | frgrwopreg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1, 2, 3, 4, 5 | frgrwopreglem4 30347 | . . 3 ⊢ (𝐺 ∈ FriendGraph → ∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸) |
7 | snidg 4682 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → 𝑋 ∈ {𝑋}) |
9 | eleq2 2833 | . . . . . . 7 ⊢ (𝐴 = {𝑋} → (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ {𝑋})) | |
10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ {𝑋})) |
11 | 8, 10 | mpbird 257 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → 𝑋 ∈ 𝐴) |
12 | preq1 4758 | . . . . . . . 8 ⊢ (𝑣 = 𝑋 → {𝑣, 𝑤} = {𝑋, 𝑤}) | |
13 | 12 | eleq1d 2829 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → ({𝑣, 𝑤} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸)) |
14 | 13 | ralbidv 3184 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸)) |
15 | 14 | rspcv 3631 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸)) |
16 | 11, 15 | syl 17 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸)) |
17 | difeq2 4143 | . . . . . . 7 ⊢ (𝐴 = {𝑋} → (𝑉 ∖ 𝐴) = (𝑉 ∖ {𝑋})) | |
18 | 4, 17 | eqtrid 2792 | . . . . . 6 ⊢ (𝐴 = {𝑋} → 𝐵 = (𝑉 ∖ {𝑋})) |
19 | 18 | adantl 481 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → 𝐵 = (𝑉 ∖ {𝑋})) |
20 | 19 | raleqdv 3334 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
21 | 16, 20 | sylibd 239 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
22 | 6, 21 | syl5com 31 | . 2 ⊢ (𝐺 ∈ FriendGraph → ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
23 | 22 | 3impib 1116 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 ∖ cdif 3973 {csn 4648 {cpr 4650 ‘cfv 6573 Vtxcvtx 29031 Edgcedg 29082 VtxDegcvtxdg 29501 FriendGraph cfrgr 30290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-xadd 13176 df-fz 13568 df-hash 14380 df-edg 29083 df-uhgr 29093 df-ushgr 29094 df-upgr 29117 df-umgr 29118 df-uspgr 29185 df-usgr 29186 df-nbgr 29368 df-vtxdg 29502 df-frgr 30291 |
This theorem is referenced by: frgrwopreg1 30350 |
Copyright terms: Public domain | W3C validator |