MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopregasn Structured version   Visualization version   GIF version

Theorem frgrwopregasn 30348
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 30350 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopregasn ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝑋   𝑥,𝐵   𝑤,𝐴   𝑤,𝐵   𝑤,𝐺,𝑥   𝑤,𝑉   𝑤,𝑋
Allowed substitution hints:   𝐷(𝑤)   𝐸(𝑥,𝑤)   𝐾(𝑤)

Proof of Theorem frgrwopregasn
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 frgrwopreg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . . 4 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . . 4 𝐵 = (𝑉𝐴)
5 frgrwopreg.e . . . 4 𝐸 = (Edg‘𝐺)
61, 2, 3, 4, 5frgrwopreglem4 30347 . . 3 (𝐺 ∈ FriendGraph → ∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸)
7 snidg 4682 . . . . . . 7 (𝑋𝑉𝑋 ∈ {𝑋})
87adantr 480 . . . . . 6 ((𝑋𝑉𝐴 = {𝑋}) → 𝑋 ∈ {𝑋})
9 eleq2 2833 . . . . . . 7 (𝐴 = {𝑋} → (𝑋𝐴𝑋 ∈ {𝑋}))
109adantl 481 . . . . . 6 ((𝑋𝑉𝐴 = {𝑋}) → (𝑋𝐴𝑋 ∈ {𝑋}))
118, 10mpbird 257 . . . . 5 ((𝑋𝑉𝐴 = {𝑋}) → 𝑋𝐴)
12 preq1 4758 . . . . . . . 8 (𝑣 = 𝑋 → {𝑣, 𝑤} = {𝑋, 𝑤})
1312eleq1d 2829 . . . . . . 7 (𝑣 = 𝑋 → ({𝑣, 𝑤} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸))
1413ralbidv 3184 . . . . . 6 (𝑣 = 𝑋 → (∀𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 ↔ ∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸))
1514rspcv 3631 . . . . 5 (𝑋𝐴 → (∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸))
1611, 15syl 17 . . . 4 ((𝑋𝑉𝐴 = {𝑋}) → (∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸))
17 difeq2 4143 . . . . . . 7 (𝐴 = {𝑋} → (𝑉𝐴) = (𝑉 ∖ {𝑋}))
184, 17eqtrid 2792 . . . . . 6 (𝐴 = {𝑋} → 𝐵 = (𝑉 ∖ {𝑋}))
1918adantl 481 . . . . 5 ((𝑋𝑉𝐴 = {𝑋}) → 𝐵 = (𝑉 ∖ {𝑋}))
2019raleqdv 3334 . . . 4 ((𝑋𝑉𝐴 = {𝑋}) → (∀𝑤𝐵 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
2116, 20sylibd 239 . . 3 ((𝑋𝑉𝐴 = {𝑋}) → (∀𝑣𝐴𝑤𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
226, 21syl5com 31 . 2 (𝐺 ∈ FriendGraph → ((𝑋𝑉𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸))
23223impib 1116 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cdif 3973  {csn 4648  {cpr 4650  cfv 6573  Vtxcvtx 29031  Edgcedg 29082  VtxDegcvtxdg 29501   FriendGraph cfrgr 30290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-xadd 13176  df-fz 13568  df-hash 14380  df-edg 29083  df-uhgr 29093  df-ushgr 29094  df-upgr 29117  df-umgr 29118  df-uspgr 29185  df-usgr 29186  df-nbgr 29368  df-vtxdg 29502  df-frgr 30291
This theorem is referenced by:  frgrwopreg1  30350
  Copyright terms: Public domain W3C validator