![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopregasn | Structured version Visualization version GIF version |
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 30146 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
frgrwopreg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrwopregasn | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrwopreg.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
3 | frgrwopreg.a | . . . 4 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
4 | frgrwopreg.b | . . . 4 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
5 | frgrwopreg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
6 | 1, 2, 3, 4, 5 | frgrwopreglem4 30143 | . . 3 ⊢ (𝐺 ∈ FriendGraph → ∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸) |
7 | snidg 4665 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
8 | 7 | adantr 479 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → 𝑋 ∈ {𝑋}) |
9 | eleq2 2817 | . . . . . . 7 ⊢ (𝐴 = {𝑋} → (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ {𝑋})) | |
10 | 9 | adantl 480 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (𝑋 ∈ 𝐴 ↔ 𝑋 ∈ {𝑋})) |
11 | 8, 10 | mpbird 256 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → 𝑋 ∈ 𝐴) |
12 | preq1 4740 | . . . . . . . 8 ⊢ (𝑣 = 𝑋 → {𝑣, 𝑤} = {𝑋, 𝑤}) | |
13 | 12 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → ({𝑣, 𝑤} ∈ 𝐸 ↔ {𝑋, 𝑤} ∈ 𝐸)) |
14 | 13 | ralbidv 3173 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸)) |
15 | 14 | rspcv 3605 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸)) |
16 | 11, 15 | syl 17 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸)) |
17 | difeq2 4114 | . . . . . . 7 ⊢ (𝐴 = {𝑋} → (𝑉 ∖ 𝐴) = (𝑉 ∖ {𝑋})) | |
18 | 4, 17 | eqtrid 2779 | . . . . . 6 ⊢ (𝐴 = {𝑋} → 𝐵 = (𝑉 ∖ {𝑋})) |
19 | 18 | adantl 480 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → 𝐵 = (𝑉 ∖ {𝑋})) |
20 | 19 | raleqdv 3321 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (∀𝑤 ∈ 𝐵 {𝑋, 𝑤} ∈ 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
21 | 16, 20 | sylibd 238 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → (∀𝑣 ∈ 𝐴 ∀𝑤 ∈ 𝐵 {𝑣, 𝑤} ∈ 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
22 | 6, 21 | syl5com 31 | . 2 ⊢ (𝐺 ∈ FriendGraph → ((𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸)) |
23 | 22 | 3impib 1113 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑋 ∈ 𝑉 ∧ 𝐴 = {𝑋}) → ∀𝑤 ∈ (𝑉 ∖ {𝑋}){𝑋, 𝑤} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3057 {crab 3428 ∖ cdif 3944 {csn 4630 {cpr 4632 ‘cfv 6551 Vtxcvtx 28827 Edgcedg 28878 VtxDegcvtxdg 29297 FriendGraph cfrgr 30086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-oadd 8495 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-dju 9930 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-n0 12509 df-xnn0 12581 df-z 12595 df-uz 12859 df-xadd 13131 df-fz 13523 df-hash 14328 df-edg 28879 df-uhgr 28889 df-ushgr 28890 df-upgr 28913 df-umgr 28914 df-uspgr 28981 df-usgr 28982 df-nbgr 29164 df-vtxdg 29298 df-frgr 30087 |
This theorem is referenced by: frgrwopreg1 30146 |
Copyright terms: Public domain | W3C validator |