![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopregasn | Structured version Visualization version GIF version |
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". This version of frgrwopreg1 30167 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Revised by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | β’ π = (VtxβπΊ) |
frgrwopreg.d | β’ π· = (VtxDegβπΊ) |
frgrwopreg.a | β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} |
frgrwopreg.b | β’ π΅ = (π β π΄) |
frgrwopreg.e | β’ πΈ = (EdgβπΊ) |
Ref | Expression |
---|---|
frgrwopregasn | β’ ((πΊ β FriendGraph β§ π β π β§ π΄ = {π}) β βπ€ β (π β {π}){π, π€} β πΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . . 4 β’ π = (VtxβπΊ) | |
2 | frgrwopreg.d | . . . 4 β’ π· = (VtxDegβπΊ) | |
3 | frgrwopreg.a | . . . 4 β’ π΄ = {π₯ β π β£ (π·βπ₯) = πΎ} | |
4 | frgrwopreg.b | . . . 4 β’ π΅ = (π β π΄) | |
5 | frgrwopreg.e | . . . 4 β’ πΈ = (EdgβπΊ) | |
6 | 1, 2, 3, 4, 5 | frgrwopreglem4 30164 | . . 3 β’ (πΊ β FriendGraph β βπ£ β π΄ βπ€ β π΅ {π£, π€} β πΈ) |
7 | snidg 4659 | . . . . . . 7 β’ (π β π β π β {π}) | |
8 | 7 | adantr 479 | . . . . . 6 β’ ((π β π β§ π΄ = {π}) β π β {π}) |
9 | eleq2 2814 | . . . . . . 7 β’ (π΄ = {π} β (π β π΄ β π β {π})) | |
10 | 9 | adantl 480 | . . . . . 6 β’ ((π β π β§ π΄ = {π}) β (π β π΄ β π β {π})) |
11 | 8, 10 | mpbird 256 | . . . . 5 β’ ((π β π β§ π΄ = {π}) β π β π΄) |
12 | preq1 4734 | . . . . . . . 8 β’ (π£ = π β {π£, π€} = {π, π€}) | |
13 | 12 | eleq1d 2810 | . . . . . . 7 β’ (π£ = π β ({π£, π€} β πΈ β {π, π€} β πΈ)) |
14 | 13 | ralbidv 3168 | . . . . . 6 β’ (π£ = π β (βπ€ β π΅ {π£, π€} β πΈ β βπ€ β π΅ {π, π€} β πΈ)) |
15 | 14 | rspcv 3599 | . . . . 5 β’ (π β π΄ β (βπ£ β π΄ βπ€ β π΅ {π£, π€} β πΈ β βπ€ β π΅ {π, π€} β πΈ)) |
16 | 11, 15 | syl 17 | . . . 4 β’ ((π β π β§ π΄ = {π}) β (βπ£ β π΄ βπ€ β π΅ {π£, π€} β πΈ β βπ€ β π΅ {π, π€} β πΈ)) |
17 | difeq2 4109 | . . . . . . 7 β’ (π΄ = {π} β (π β π΄) = (π β {π})) | |
18 | 4, 17 | eqtrid 2777 | . . . . . 6 β’ (π΄ = {π} β π΅ = (π β {π})) |
19 | 18 | adantl 480 | . . . . 5 β’ ((π β π β§ π΄ = {π}) β π΅ = (π β {π})) |
20 | 19 | raleqdv 3315 | . . . 4 β’ ((π β π β§ π΄ = {π}) β (βπ€ β π΅ {π, π€} β πΈ β βπ€ β (π β {π}){π, π€} β πΈ)) |
21 | 16, 20 | sylibd 238 | . . 3 β’ ((π β π β§ π΄ = {π}) β (βπ£ β π΄ βπ€ β π΅ {π£, π€} β πΈ β βπ€ β (π β {π}){π, π€} β πΈ)) |
22 | 6, 21 | syl5com 31 | . 2 β’ (πΊ β FriendGraph β ((π β π β§ π΄ = {π}) β βπ€ β (π β {π}){π, π€} β πΈ)) |
23 | 22 | 3impib 1113 | 1 β’ ((πΊ β FriendGraph β§ π β π β§ π΄ = {π}) β βπ€ β (π β {π}){π, π€} β πΈ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3051 {crab 3419 β cdif 3938 {csn 4625 {cpr 4627 βcfv 6543 Vtxcvtx 28848 Edgcedg 28899 VtxDegcvtxdg 29318 FriendGraph cfrgr 30107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-n0 12498 df-xnn0 12570 df-z 12584 df-uz 12848 df-xadd 13120 df-fz 13512 df-hash 14317 df-edg 28900 df-uhgr 28910 df-ushgr 28911 df-upgr 28934 df-umgr 28935 df-uspgr 29002 df-usgr 29003 df-nbgr 29185 df-vtxdg 29319 df-frgr 30108 |
This theorem is referenced by: frgrwopreg1 30167 |
Copyright terms: Public domain | W3C validator |