MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nprm Structured version   Visualization version   GIF version

Theorem 0nprm 16559
Description: 0 is not a prime number. Already Definition df-prm 16553 excludes 0 from being prime (ℙ = {𝑝 ∈ ℕ ∣ ...), but even if 𝑝 ∈ ℕ0 was allowed, the condition {𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o would not hold for 𝑝 = 0, because {𝑛 ∈ ℕ ∣ 𝑛 ∥ 0} = ℕ, see dvds0 16159, and ¬ ℕ ≈ 2o (there are more than 2 positive integers). (Contributed by AV, 29-May-2023.)
Assertion
Ref Expression
0nprm ¬ 0 ∈ ℙ

Proof of Theorem 0nprm
StepHypRef Expression
1 0nnn 12194 . 2 ¬ 0 ∈ ℕ
2 prmnn 16555 . 2 (0 ∈ ℙ → 0 ∈ ℕ)
31, 2mto 196 1 ¬ 0 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2107  0cc0 11056  cn 12158  cprime 16552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-nn 12159  df-prm 16553
This theorem is referenced by:  2mulprm  16574  2sqnn  26803
  Copyright terms: Public domain W3C validator