| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > r1filim | Structured version Visualization version GIF version | ||
| Description: A finite set appears in the cumulative hierarchy prior to a limit ordinal iff all of its elements appear in the cumulative hierarchy prior to that limit ordinal. (Contributed by BTernaryTau, 22-Jan-2026.) |
| Ref | Expression |
|---|---|
| r1filim | ⊢ ((𝐴 ∈ Fin ∧ Lim 𝐵) → (𝐴 ∈ ∪ (𝑅1 “ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ (𝑅1 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1elcl 35107 | . . . . . . 7 ⊢ ((𝐴 ∈ (𝑅1‘𝑦) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑅1‘𝑦)) | |
| 2 | 1 | expcom 413 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝐴 ∈ (𝑅1‘𝑦) → 𝑥 ∈ (𝑅1‘𝑦))) |
| 3 | 2 | reximdv 3147 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (∃𝑦 ∈ 𝐵 𝐴 ∈ (𝑅1‘𝑦) → ∃𝑦 ∈ 𝐵 𝑥 ∈ (𝑅1‘𝑦))) |
| 4 | r1funlim 9659 | . . . . . . 7 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 5 | 4 | simpli 483 | . . . . . 6 ⊢ Fun 𝑅1 |
| 6 | eluniima 7184 | . . . . . 6 ⊢ (Fun 𝑅1 → (𝐴 ∈ ∪ (𝑅1 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝐴 ∈ (𝑅1‘𝑦))) | |
| 7 | 5, 6 | ax-mp 5 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝐴 ∈ (𝑅1‘𝑦)) |
| 8 | eluniima 7184 | . . . . . 6 ⊢ (Fun 𝑅1 → (𝑥 ∈ ∪ (𝑅1 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑥 ∈ (𝑅1‘𝑦))) | |
| 9 | 5, 8 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ ∪ (𝑅1 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑥 ∈ (𝑅1‘𝑦)) |
| 10 | 3, 7, 9 | 3imtr4g 296 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝐴 ∈ ∪ (𝑅1 “ 𝐵) → 𝑥 ∈ ∪ (𝑅1 “ 𝐵))) |
| 11 | 10 | com12 32 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ (𝑅1 “ 𝐵))) |
| 12 | 11 | ralrimiv 3123 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ 𝐵) → ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ (𝑅1 “ 𝐵)) |
| 13 | r1filimi 35112 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ (𝑅1 “ 𝐵) ∧ Lim 𝐵) → 𝐴 ∈ ∪ (𝑅1 “ 𝐵)) | |
| 14 | 13 | 3com23 1126 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ Lim 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ (𝑅1 “ 𝐵)) → 𝐴 ∈ ∪ (𝑅1 “ 𝐵)) |
| 15 | 14 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ Fin ∧ Lim 𝐵) → (∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ (𝑅1 “ 𝐵) → 𝐴 ∈ ∪ (𝑅1 “ 𝐵))) |
| 16 | 12, 15 | impbid2 226 | 1 ⊢ ((𝐴 ∈ Fin ∧ Lim 𝐵) → (𝐴 ∈ ∪ (𝑅1 “ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ (𝑅1 “ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∪ cuni 4859 dom cdm 5616 “ cima 5619 Lim wlim 6307 Fun wfun 6475 ‘cfv 6481 Fincfn 8869 𝑅1cr1 9655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-en 8870 df-dom 8871 df-fin 8873 df-r1 9657 df-rank 9658 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |