Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1filimi Structured version   Visualization version   GIF version

Theorem r1filimi 35135
Description: If all elements in a finite set appear in the cumulative hierarchy prior to a limit ordinal, then that set also appears in the cumulative hierarchy prior to the limit ordinal. (Contributed by BTernaryTau, 19-Jan-2026.)
Assertion
Ref Expression
r1filimi ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 (𝑅1𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem r1filimi
Dummy variables 𝑤 𝑎 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3290 . . . . . . 7 (𝑎 = 𝐴 → (∀𝑥𝑎 𝑥 (𝑅1𝐵) ↔ ∀𝑥𝐴 𝑥 (𝑅1𝐵)))
2 eleq1 2821 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On)))
31, 2imbi12d 344 . . . . . 6 (𝑎 = 𝐴 → ((∀𝑥𝑎 𝑥 (𝑅1𝐵) → 𝑎 (𝑅1 “ On)) ↔ (∀𝑥𝐴 𝑥 (𝑅1𝐵) → 𝐴 (𝑅1 “ On))))
43imbi2d 340 . . . . 5 (𝑎 = 𝐴 → ((Lim 𝐵 → (∀𝑥𝑎 𝑥 (𝑅1𝐵) → 𝑎 (𝑅1 “ On))) ↔ (Lim 𝐵 → (∀𝑥𝐴 𝑥 (𝑅1𝐵) → 𝐴 (𝑅1 “ On)))))
5 r1funlim 9666 . . . . . . . . . 10 (Fun 𝑅1 ∧ Lim dom 𝑅1)
65simpli 483 . . . . . . . . 9 Fun 𝑅1
7 eluniima 7190 . . . . . . . . 9 (Fun 𝑅1 → (𝑥 (𝑅1𝐵) ↔ ∃𝑦𝐵 𝑥 ∈ (𝑅1𝑦)))
86, 7ax-mp 5 . . . . . . . 8 (𝑥 (𝑅1𝐵) ↔ ∃𝑦𝐵 𝑥 ∈ (𝑅1𝑦))
9 limord 6372 . . . . . . . . . . . 12 (Lim 𝐵 → Ord 𝐵)
10 ordsson 7722 . . . . . . . . . . . 12 (Ord 𝐵𝐵 ⊆ On)
119, 10syl 17 . . . . . . . . . . 11 (Lim 𝐵𝐵 ⊆ On)
1211sseld 3929 . . . . . . . . . 10 (Lim 𝐵 → (𝑦𝐵𝑦 ∈ On))
1312anim1d 611 . . . . . . . . 9 (Lim 𝐵 → ((𝑦𝐵𝑥 ∈ (𝑅1𝑦)) → (𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦))))
1413reximdv2 3143 . . . . . . . 8 (Lim 𝐵 → (∃𝑦𝐵 𝑥 ∈ (𝑅1𝑦) → ∃𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦)))
158, 14biimtrid 242 . . . . . . 7 (Lim 𝐵 → (𝑥 (𝑅1𝐵) → ∃𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦)))
1615ralimdv 3147 . . . . . 6 (Lim 𝐵 → (∀𝑥𝑎 𝑥 (𝑅1𝐵) → ∀𝑥𝑎𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦)))
17 vex 3441 . . . . . . . 8 𝑎 ∈ V
1817tz9.12 9690 . . . . . . 7 (∀𝑥𝑎𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → ∃𝑦 ∈ On 𝑎 ∈ (𝑅1𝑦))
19 eluniima 7190 . . . . . . . 8 (Fun 𝑅1 → (𝑎 (𝑅1 “ On) ↔ ∃𝑦 ∈ On 𝑎 ∈ (𝑅1𝑦)))
206, 19ax-mp 5 . . . . . . 7 (𝑎 (𝑅1 “ On) ↔ ∃𝑦 ∈ On 𝑎 ∈ (𝑅1𝑦))
2118, 20sylibr 234 . . . . . 6 (∀𝑥𝑎𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → 𝑎 (𝑅1 “ On))
2216, 21syl6 35 . . . . 5 (Lim 𝐵 → (∀𝑥𝑎 𝑥 (𝑅1𝐵) → 𝑎 (𝑅1 “ On)))
234, 22vtoclg 3508 . . . 4 (𝐴 ∈ Fin → (Lim 𝐵 → (∀𝑥𝐴 𝑥 (𝑅1𝐵) → 𝐴 (𝑅1 “ On))))
2423impcomd 411 . . 3 (𝐴 ∈ Fin → ((∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 (𝑅1 “ On)))
25243impib 1116 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 (𝑅1 “ On))
26 simp3 1138 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → Lim 𝐵)
27 simp1 1136 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 ∈ Fin)
28 eluniima 7190 . . . . . . . . 9 (Fun 𝑅1 → (𝑥 (𝑅1𝐵) ↔ ∃𝑧𝐵 𝑥 ∈ (𝑅1𝑧)))
296, 28ax-mp 5 . . . . . . . 8 (𝑥 (𝑅1𝐵) ↔ ∃𝑧𝐵 𝑥 ∈ (𝑅1𝑧))
30 df-rex 3058 . . . . . . . . 9 (∃𝑧𝐵 𝑥 ∈ (𝑅1𝑧) ↔ ∃𝑧(𝑧𝐵𝑥 ∈ (𝑅1𝑧)))
31 rankr1ai 9698 . . . . . . . . . . . 12 (𝑥 ∈ (𝑅1𝑧) → (rank‘𝑥) ∈ 𝑧)
32 ordtr1 6355 . . . . . . . . . . . 12 (Ord 𝐵 → (((rank‘𝑥) ∈ 𝑧𝑧𝐵) → (rank‘𝑥) ∈ 𝐵))
3331, 32sylani 604 . . . . . . . . . . 11 (Ord 𝐵 → ((𝑥 ∈ (𝑅1𝑧) ∧ 𝑧𝐵) → (rank‘𝑥) ∈ 𝐵))
3433ancomsd 465 . . . . . . . . . 10 (Ord 𝐵 → ((𝑧𝐵𝑥 ∈ (𝑅1𝑧)) → (rank‘𝑥) ∈ 𝐵))
3534exlimdv 1934 . . . . . . . . 9 (Ord 𝐵 → (∃𝑧(𝑧𝐵𝑥 ∈ (𝑅1𝑧)) → (rank‘𝑥) ∈ 𝐵))
3630, 35biimtrid 242 . . . . . . . 8 (Ord 𝐵 → (∃𝑧𝐵 𝑥 ∈ (𝑅1𝑧) → (rank‘𝑥) ∈ 𝐵))
3729, 36biimtrid 242 . . . . . . 7 (Ord 𝐵 → (𝑥 (𝑅1𝐵) → (rank‘𝑥) ∈ 𝐵))
3837ralimdv 3147 . . . . . 6 (Ord 𝐵 → (∀𝑥𝐴 𝑥 (𝑅1𝐵) → ∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵))
399, 38syl 17 . . . . 5 (Lim 𝐵 → (∀𝑥𝐴 𝑥 (𝑅1𝐵) → ∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵))
4039impcom 407 . . . 4 ((∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → ∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵)
41403adant1 1130 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → ∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵)
42 rankfilimbi 35133 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (rank‘𝐴) ∈ 𝐵)
4327, 25, 41, 26, 42syl22anc 838 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → (rank‘𝐴) ∈ 𝐵)
44 fveq2 6828 . . . . 5 (𝑤 = suc (rank‘𝐴) → (𝑅1𝑤) = (𝑅1‘suc (rank‘𝐴)))
4544eleq2d 2819 . . . 4 (𝑤 = suc (rank‘𝐴) → (𝐴 ∈ (𝑅1𝑤) ↔ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
46 limsuc 7785 . . . . . 6 (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
4746biimpa 476 . . . . 5 ((Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → suc (rank‘𝐴) ∈ 𝐵)
48473adant1 1130 . . . 4 ((𝐴 (𝑅1 “ On) ∧ Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → suc (rank‘𝐴) ∈ 𝐵)
49 rankidb 9700 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
50493ad2ant1 1133 . . . 4 ((𝐴 (𝑅1 “ On) ∧ Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
5145, 48, 50rspcedvdw 3576 . . 3 ((𝐴 (𝑅1 “ On) ∧ Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → ∃𝑤𝐵 𝐴 ∈ (𝑅1𝑤))
52 eluniima 7190 . . . 4 (Fun 𝑅1 → (𝐴 (𝑅1𝐵) ↔ ∃𝑤𝐵 𝐴 ∈ (𝑅1𝑤)))
536, 52ax-mp 5 . . 3 (𝐴 (𝑅1𝐵) ↔ ∃𝑤𝐵 𝐴 ∈ (𝑅1𝑤))
5451, 53sylibr 234 . 2 ((𝐴 (𝑅1 “ On) ∧ Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → 𝐴 (𝑅1𝐵))
5525, 26, 43, 54syl3anc 1373 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 (𝑅1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wral 3048  wrex 3057  wss 3898   cuni 4858  dom cdm 5619  cima 5622  Ord word 6310  Oncon0 6311  Lim wlim 6312  suc csuc 6313  Fun wfun 6480  cfv 6486  Fincfn 8875  𝑅1cr1 9662  rankcrnk 9663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-en 8876  df-dom 8877  df-fin 8879  df-r1 9664  df-rank 9665
This theorem is referenced by:  r1filim  35136  r1omhf  35138
  Copyright terms: Public domain W3C validator