Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1filimi Structured version   Visualization version   GIF version

Theorem r1filimi 35106
Description: If all elements in a finite set appear in the cumulative hierarchy prior to a limit ordinal, then that set also appears in the cumulative hierarchy prior to the limit ordinal. (Contributed by BTernaryTau, 19-Jan-2026.)
Assertion
Ref Expression
r1filimi ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 (𝑅1𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem r1filimi
Dummy variables 𝑤 𝑎 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3289 . . . . . . 7 (𝑎 = 𝐴 → (∀𝑥𝑎 𝑥 (𝑅1𝐵) ↔ ∀𝑥𝐴 𝑥 (𝑅1𝐵)))
2 eleq1 2819 . . . . . . 7 (𝑎 = 𝐴 → (𝑎 (𝑅1 “ On) ↔ 𝐴 (𝑅1 “ On)))
31, 2imbi12d 344 . . . . . 6 (𝑎 = 𝐴 → ((∀𝑥𝑎 𝑥 (𝑅1𝐵) → 𝑎 (𝑅1 “ On)) ↔ (∀𝑥𝐴 𝑥 (𝑅1𝐵) → 𝐴 (𝑅1 “ On))))
43imbi2d 340 . . . . 5 (𝑎 = 𝐴 → ((Lim 𝐵 → (∀𝑥𝑎 𝑥 (𝑅1𝐵) → 𝑎 (𝑅1 “ On))) ↔ (Lim 𝐵 → (∀𝑥𝐴 𝑥 (𝑅1𝐵) → 𝐴 (𝑅1 “ On)))))
5 r1funlim 9656 . . . . . . . . . 10 (Fun 𝑅1 ∧ Lim dom 𝑅1)
65simpli 483 . . . . . . . . 9 Fun 𝑅1
7 eluniima 7184 . . . . . . . . 9 (Fun 𝑅1 → (𝑥 (𝑅1𝐵) ↔ ∃𝑦𝐵 𝑥 ∈ (𝑅1𝑦)))
86, 7ax-mp 5 . . . . . . . 8 (𝑥 (𝑅1𝐵) ↔ ∃𝑦𝐵 𝑥 ∈ (𝑅1𝑦))
9 limord 6367 . . . . . . . . . . . 12 (Lim 𝐵 → Ord 𝐵)
10 ordsson 7716 . . . . . . . . . . . 12 (Ord 𝐵𝐵 ⊆ On)
119, 10syl 17 . . . . . . . . . . 11 (Lim 𝐵𝐵 ⊆ On)
1211sseld 3933 . . . . . . . . . 10 (Lim 𝐵 → (𝑦𝐵𝑦 ∈ On))
1312anim1d 611 . . . . . . . . 9 (Lim 𝐵 → ((𝑦𝐵𝑥 ∈ (𝑅1𝑦)) → (𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1𝑦))))
1413reximdv2 3142 . . . . . . . 8 (Lim 𝐵 → (∃𝑦𝐵 𝑥 ∈ (𝑅1𝑦) → ∃𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦)))
158, 14biimtrid 242 . . . . . . 7 (Lim 𝐵 → (𝑥 (𝑅1𝐵) → ∃𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦)))
1615ralimdv 3146 . . . . . 6 (Lim 𝐵 → (∀𝑥𝑎 𝑥 (𝑅1𝐵) → ∀𝑥𝑎𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦)))
17 vex 3440 . . . . . . . 8 𝑎 ∈ V
1817tz9.12 9680 . . . . . . 7 (∀𝑥𝑎𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → ∃𝑦 ∈ On 𝑎 ∈ (𝑅1𝑦))
19 eluniima 7184 . . . . . . . 8 (Fun 𝑅1 → (𝑎 (𝑅1 “ On) ↔ ∃𝑦 ∈ On 𝑎 ∈ (𝑅1𝑦)))
206, 19ax-mp 5 . . . . . . 7 (𝑎 (𝑅1 “ On) ↔ ∃𝑦 ∈ On 𝑎 ∈ (𝑅1𝑦))
2118, 20sylibr 234 . . . . . 6 (∀𝑥𝑎𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → 𝑎 (𝑅1 “ On))
2216, 21syl6 35 . . . . 5 (Lim 𝐵 → (∀𝑥𝑎 𝑥 (𝑅1𝐵) → 𝑎 (𝑅1 “ On)))
234, 22vtoclg 3509 . . . 4 (𝐴 ∈ Fin → (Lim 𝐵 → (∀𝑥𝐴 𝑥 (𝑅1𝐵) → 𝐴 (𝑅1 “ On))))
2423impcomd 411 . . 3 (𝐴 ∈ Fin → ((∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 (𝑅1 “ On)))
25243impib 1116 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 (𝑅1 “ On))
26 simp3 1138 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → Lim 𝐵)
27 simp1 1136 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 ∈ Fin)
28 eluniima 7184 . . . . . . . . 9 (Fun 𝑅1 → (𝑥 (𝑅1𝐵) ↔ ∃𝑧𝐵 𝑥 ∈ (𝑅1𝑧)))
296, 28ax-mp 5 . . . . . . . 8 (𝑥 (𝑅1𝐵) ↔ ∃𝑧𝐵 𝑥 ∈ (𝑅1𝑧))
30 df-rex 3057 . . . . . . . . 9 (∃𝑧𝐵 𝑥 ∈ (𝑅1𝑧) ↔ ∃𝑧(𝑧𝐵𝑥 ∈ (𝑅1𝑧)))
31 rankr1ai 9688 . . . . . . . . . . . 12 (𝑥 ∈ (𝑅1𝑧) → (rank‘𝑥) ∈ 𝑧)
32 ordtr1 6350 . . . . . . . . . . . 12 (Ord 𝐵 → (((rank‘𝑥) ∈ 𝑧𝑧𝐵) → (rank‘𝑥) ∈ 𝐵))
3331, 32sylani 604 . . . . . . . . . . 11 (Ord 𝐵 → ((𝑥 ∈ (𝑅1𝑧) ∧ 𝑧𝐵) → (rank‘𝑥) ∈ 𝐵))
3433ancomsd 465 . . . . . . . . . 10 (Ord 𝐵 → ((𝑧𝐵𝑥 ∈ (𝑅1𝑧)) → (rank‘𝑥) ∈ 𝐵))
3534exlimdv 1934 . . . . . . . . 9 (Ord 𝐵 → (∃𝑧(𝑧𝐵𝑥 ∈ (𝑅1𝑧)) → (rank‘𝑥) ∈ 𝐵))
3630, 35biimtrid 242 . . . . . . . 8 (Ord 𝐵 → (∃𝑧𝐵 𝑥 ∈ (𝑅1𝑧) → (rank‘𝑥) ∈ 𝐵))
3729, 36biimtrid 242 . . . . . . 7 (Ord 𝐵 → (𝑥 (𝑅1𝐵) → (rank‘𝑥) ∈ 𝐵))
3837ralimdv 3146 . . . . . 6 (Ord 𝐵 → (∀𝑥𝐴 𝑥 (𝑅1𝐵) → ∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵))
399, 38syl 17 . . . . 5 (Lim 𝐵 → (∀𝑥𝐴 𝑥 (𝑅1𝐵) → ∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵))
4039impcom 407 . . . 4 ((∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → ∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵)
41403adant1 1130 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → ∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵)
42 rankfilimbi 35105 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 (𝑅1 “ On)) ∧ (∀𝑥𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (rank‘𝐴) ∈ 𝐵)
4327, 25, 41, 26, 42syl22anc 838 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → (rank‘𝐴) ∈ 𝐵)
44 fveq2 6822 . . . . 5 (𝑤 = suc (rank‘𝐴) → (𝑅1𝑤) = (𝑅1‘suc (rank‘𝐴)))
4544eleq2d 2817 . . . 4 (𝑤 = suc (rank‘𝐴) → (𝐴 ∈ (𝑅1𝑤) ↔ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
46 limsuc 7779 . . . . . 6 (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
4746biimpa 476 . . . . 5 ((Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → suc (rank‘𝐴) ∈ 𝐵)
48473adant1 1130 . . . 4 ((𝐴 (𝑅1 “ On) ∧ Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → suc (rank‘𝐴) ∈ 𝐵)
49 rankidb 9690 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
50493ad2ant1 1133 . . . 4 ((𝐴 (𝑅1 “ On) ∧ Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
5145, 48, 50rspcedvdw 3580 . . 3 ((𝐴 (𝑅1 “ On) ∧ Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → ∃𝑤𝐵 𝐴 ∈ (𝑅1𝑤))
52 eluniima 7184 . . . 4 (Fun 𝑅1 → (𝐴 (𝑅1𝐵) ↔ ∃𝑤𝐵 𝐴 ∈ (𝑅1𝑤)))
536, 52ax-mp 5 . . 3 (𝐴 (𝑅1𝐵) ↔ ∃𝑤𝐵 𝐴 ∈ (𝑅1𝑤))
5451, 53sylibr 234 . 2 ((𝐴 (𝑅1 “ On) ∧ Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → 𝐴 (𝑅1𝐵))
5525, 26, 43, 54syl3anc 1373 1 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝑥 (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 (𝑅1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  wss 3902   cuni 4859  dom cdm 5616  cima 5619  Ord word 6305  Oncon0 6306  Lim wlim 6307  suc csuc 6308  Fun wfun 6475  cfv 6481  Fincfn 8869  𝑅1cr1 9652  rankcrnk 9653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-en 8870  df-dom 8871  df-fin 8873  df-r1 9654  df-rank 9655
This theorem is referenced by:  r1omhf  35108
  Copyright terms: Public domain W3C validator