| Step | Hyp | Ref
| Expression |
| 1 | | raleq 3289 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 𝑥 ∈ ∪
(𝑅1 “ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵))) |
| 2 | | eleq1 2819 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝑎 ∈ ∪
(𝑅1 “ On) ↔ 𝐴 ∈ ∪
(𝑅1 “ On))) |
| 3 | 1, 2 | imbi12d 344 |
. . . . . 6
⊢ (𝑎 = 𝐴 → ((∀𝑥 ∈ 𝑎 𝑥 ∈ ∪
(𝑅1 “ 𝐵) → 𝑎 ∈ ∪
(𝑅1 “ On)) ↔ (∀𝑥 ∈ 𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵) → 𝐴 ∈ ∪
(𝑅1 “ On)))) |
| 4 | 3 | imbi2d 340 |
. . . . 5
⊢ (𝑎 = 𝐴 → ((Lim 𝐵 → (∀𝑥 ∈ 𝑎 𝑥 ∈ ∪
(𝑅1 “ 𝐵) → 𝑎 ∈ ∪
(𝑅1 “ On))) ↔ (Lim 𝐵 → (∀𝑥 ∈ 𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵) → 𝐴 ∈ ∪
(𝑅1 “ On))))) |
| 5 | | r1funlim 9656 |
. . . . . . . . . 10
⊢ (Fun
𝑅1 ∧ Lim dom 𝑅1) |
| 6 | 5 | simpli 483 |
. . . . . . . . 9
⊢ Fun
𝑅1 |
| 7 | | eluniima 7184 |
. . . . . . . . 9
⊢ (Fun
𝑅1 → (𝑥 ∈ ∪
(𝑅1 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑥 ∈ (𝑅1‘𝑦))) |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ (𝑅1 “ 𝐵) ↔ ∃𝑦 ∈ 𝐵 𝑥 ∈ (𝑅1‘𝑦)) |
| 9 | | limord 6367 |
. . . . . . . . . . . 12
⊢ (Lim
𝐵 → Ord 𝐵) |
| 10 | | ordsson 7716 |
. . . . . . . . . . . 12
⊢ (Ord
𝐵 → 𝐵 ⊆ On) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . . 11
⊢ (Lim
𝐵 → 𝐵 ⊆ On) |
| 12 | 11 | sseld 3933 |
. . . . . . . . . 10
⊢ (Lim
𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ∈ On)) |
| 13 | 12 | anim1d 611 |
. . . . . . . . 9
⊢ (Lim
𝐵 → ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ (𝑅1‘𝑦)) → (𝑦 ∈ On ∧ 𝑥 ∈ (𝑅1‘𝑦)))) |
| 14 | 13 | reximdv2 3142 |
. . . . . . . 8
⊢ (Lim
𝐵 → (∃𝑦 ∈ 𝐵 𝑥 ∈ (𝑅1‘𝑦) → ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦))) |
| 15 | 8, 14 | biimtrid 242 |
. . . . . . 7
⊢ (Lim
𝐵 → (𝑥 ∈ ∪ (𝑅1 “ 𝐵) → ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦))) |
| 16 | 15 | ralimdv 3146 |
. . . . . 6
⊢ (Lim
𝐵 → (∀𝑥 ∈ 𝑎 𝑥 ∈ ∪
(𝑅1 “ 𝐵) → ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦))) |
| 17 | | vex 3440 |
. . . . . . . 8
⊢ 𝑎 ∈ V |
| 18 | 17 | tz9.12 9680 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑎 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → ∃𝑦 ∈ On 𝑎 ∈ (𝑅1‘𝑦)) |
| 19 | | eluniima 7184 |
. . . . . . . 8
⊢ (Fun
𝑅1 → (𝑎 ∈ ∪
(𝑅1 “ On) ↔ ∃𝑦 ∈ On 𝑎 ∈ (𝑅1‘𝑦))) |
| 20 | 6, 19 | ax-mp 5 |
. . . . . . 7
⊢ (𝑎 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑦 ∈ On 𝑎 ∈ (𝑅1‘𝑦)) |
| 21 | 18, 20 | sylibr 234 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑎 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → 𝑎 ∈ ∪
(𝑅1 “ On)) |
| 22 | 16, 21 | syl6 35 |
. . . . 5
⊢ (Lim
𝐵 → (∀𝑥 ∈ 𝑎 𝑥 ∈ ∪
(𝑅1 “ 𝐵) → 𝑎 ∈ ∪
(𝑅1 “ On))) |
| 23 | 4, 22 | vtoclg 3509 |
. . . 4
⊢ (𝐴 ∈ Fin → (Lim 𝐵 → (∀𝑥 ∈ 𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵) → 𝐴 ∈ ∪
(𝑅1 “ On)))) |
| 24 | 23 | impcomd 411 |
. . 3
⊢ (𝐴 ∈ Fin →
((∀𝑥 ∈ 𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵) ∧ Lim 𝐵) → 𝐴 ∈ ∪
(𝑅1 “ On))) |
| 25 | 24 | 3impib 1116 |
. 2
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵) ∧ Lim 𝐵) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
| 26 | | simp3 1138 |
. 2
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵) ∧ Lim 𝐵) → Lim 𝐵) |
| 27 | | simp1 1136 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵) ∧ Lim 𝐵) → 𝐴 ∈ Fin) |
| 28 | | eluniima 7184 |
. . . . . . . . 9
⊢ (Fun
𝑅1 → (𝑥 ∈ ∪
(𝑅1 “ 𝐵) ↔ ∃𝑧 ∈ 𝐵 𝑥 ∈ (𝑅1‘𝑧))) |
| 29 | 6, 28 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ (𝑅1 “ 𝐵) ↔ ∃𝑧 ∈ 𝐵 𝑥 ∈ (𝑅1‘𝑧)) |
| 30 | | df-rex 3057 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
𝐵 𝑥 ∈ (𝑅1‘𝑧) ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑥 ∈ (𝑅1‘𝑧))) |
| 31 | | rankr1ai 9688 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈
(𝑅1‘𝑧) → (rank‘𝑥) ∈ 𝑧) |
| 32 | | ordtr1 6350 |
. . . . . . . . . . . 12
⊢ (Ord
𝐵 →
(((rank‘𝑥) ∈
𝑧 ∧ 𝑧 ∈ 𝐵) → (rank‘𝑥) ∈ 𝐵)) |
| 33 | 31, 32 | sylani 604 |
. . . . . . . . . . 11
⊢ (Ord
𝐵 → ((𝑥 ∈
(𝑅1‘𝑧) ∧ 𝑧 ∈ 𝐵) → (rank‘𝑥) ∈ 𝐵)) |
| 34 | 33 | ancomsd 465 |
. . . . . . . . . 10
⊢ (Ord
𝐵 → ((𝑧 ∈ 𝐵 ∧ 𝑥 ∈ (𝑅1‘𝑧)) → (rank‘𝑥) ∈ 𝐵)) |
| 35 | 34 | exlimdv 1934 |
. . . . . . . . 9
⊢ (Ord
𝐵 → (∃𝑧(𝑧 ∈ 𝐵 ∧ 𝑥 ∈ (𝑅1‘𝑧)) → (rank‘𝑥) ∈ 𝐵)) |
| 36 | 30, 35 | biimtrid 242 |
. . . . . . . 8
⊢ (Ord
𝐵 → (∃𝑧 ∈ 𝐵 𝑥 ∈ (𝑅1‘𝑧) → (rank‘𝑥) ∈ 𝐵)) |
| 37 | 29, 36 | biimtrid 242 |
. . . . . . 7
⊢ (Ord
𝐵 → (𝑥 ∈ ∪ (𝑅1 “ 𝐵) → (rank‘𝑥) ∈ 𝐵)) |
| 38 | 37 | ralimdv 3146 |
. . . . . 6
⊢ (Ord
𝐵 → (∀𝑥 ∈ 𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵) → ∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵)) |
| 39 | 9, 38 | syl 17 |
. . . . 5
⊢ (Lim
𝐵 → (∀𝑥 ∈ 𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵) → ∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵)) |
| 40 | 39 | impcom 407 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵) ∧ Lim 𝐵) → ∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵) |
| 41 | 40 | 3adant1 1130 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵) ∧ Lim 𝐵) → ∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵) |
| 42 | | rankfilimbi 35105 |
. . 3
⊢ (((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) ∧ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (rank‘𝐴) ∈ 𝐵) |
| 43 | 27, 25, 41, 26, 42 | syl22anc 838 |
. 2
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵) ∧ Lim 𝐵) → (rank‘𝐴) ∈ 𝐵) |
| 44 | | fveq2 6822 |
. . . . 5
⊢ (𝑤 = suc (rank‘𝐴) →
(𝑅1‘𝑤) = (𝑅1‘suc
(rank‘𝐴))) |
| 45 | 44 | eleq2d 2817 |
. . . 4
⊢ (𝑤 = suc (rank‘𝐴) → (𝐴 ∈ (𝑅1‘𝑤) ↔ 𝐴 ∈ (𝑅1‘suc
(rank‘𝐴)))) |
| 46 | | limsuc 7779 |
. . . . . 6
⊢ (Lim
𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵)) |
| 47 | 46 | biimpa 476 |
. . . . 5
⊢ ((Lim
𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → suc (rank‘𝐴) ∈ 𝐵) |
| 48 | 47 | 3adant1 1130 |
. . . 4
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → suc (rank‘𝐴) ∈ 𝐵) |
| 49 | | rankidb 9690 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈
(𝑅1‘suc (rank‘𝐴))) |
| 50 | 49 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → 𝐴 ∈ (𝑅1‘suc
(rank‘𝐴))) |
| 51 | 45, 48, 50 | rspcedvdw 3580 |
. . 3
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → ∃𝑤 ∈ 𝐵 𝐴 ∈ (𝑅1‘𝑤)) |
| 52 | | eluniima 7184 |
. . . 4
⊢ (Fun
𝑅1 → (𝐴 ∈ ∪
(𝑅1 “ 𝐵) ↔ ∃𝑤 ∈ 𝐵 𝐴 ∈ (𝑅1‘𝑤))) |
| 53 | 6, 52 | ax-mp 5 |
. . 3
⊢ (𝐴 ∈ ∪ (𝑅1 “ 𝐵) ↔ ∃𝑤 ∈ 𝐵 𝐴 ∈ (𝑅1‘𝑤)) |
| 54 | 51, 53 | sylibr 234 |
. 2
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ Lim 𝐵 ∧ (rank‘𝐴) ∈ 𝐵) → 𝐴 ∈ ∪
(𝑅1 “ 𝐵)) |
| 55 | 25, 26, 43, 54 | syl3anc 1373 |
1
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪
(𝑅1 “ 𝐵) ∧ Lim 𝐵) → 𝐴 ∈ ∪
(𝑅1 “ 𝐵)) |