| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vdioph | Structured version Visualization version GIF version | ||
| Description: The "universal" set (as large as possible given eldiophss 42730) is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| vdioph | ⊢ (𝐴 ∈ ℕ0 → (ℕ0 ↑m (1...𝐴)) ∈ (Dioph‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ 0 = 0 | |
| 2 | 1 | rgenw 3054 | . . 3 ⊢ ∀𝑎 ∈ (ℕ0 ↑m (1...𝐴))0 = 0 |
| 3 | rabid2 3454 | . . 3 ⊢ ((ℕ0 ↑m (1...𝐴)) = {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 0 = 0} ↔ ∀𝑎 ∈ (ℕ0 ↑m (1...𝐴))0 = 0) | |
| 4 | 2, 3 | mpbir 231 | . 2 ⊢ (ℕ0 ↑m (1...𝐴)) = {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 0 = 0} |
| 5 | ovex 7447 | . . . 4 ⊢ (1...𝐴) ∈ V | |
| 6 | 0z 12608 | . . . 4 ⊢ 0 ∈ ℤ | |
| 7 | mzpconstmpt 42696 | . . . 4 ⊢ (((1...𝐴) ∈ V ∧ 0 ∈ ℤ) → (𝑎 ∈ (ℤ ↑m (1...𝐴)) ↦ 0) ∈ (mzPoly‘(1...𝐴))) | |
| 8 | 5, 6, 7 | mp2an 692 | . . 3 ⊢ (𝑎 ∈ (ℤ ↑m (1...𝐴)) ↦ 0) ∈ (mzPoly‘(1...𝐴)) |
| 9 | eq0rabdioph 42732 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (ℤ ↑m (1...𝐴)) ↦ 0) ∈ (mzPoly‘(1...𝐴))) → {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 0 = 0} ∈ (Dioph‘𝐴)) | |
| 10 | 8, 9 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℕ0 → {𝑎 ∈ (ℕ0 ↑m (1...𝐴)) ∣ 0 = 0} ∈ (Dioph‘𝐴)) |
| 11 | 4, 10 | eqeltrid 2837 | 1 ⊢ (𝐴 ∈ ℕ0 → (ℕ0 ↑m (1...𝐴)) ∈ (Dioph‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3420 Vcvv 3464 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8849 0cc0 11138 1c1 11139 ℕ0cn0 12510 ℤcz 12597 ...cfz 13530 mzPolycmzp 42678 Diophcdioph 42711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-mzpcl 42679 df-mzp 42680 df-dioph 42712 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |