![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resstps | Structured version Visualization version GIF version |
Description: A restricted topological space is a topological space. Note that this theorem would not be true if TopSp was defined directly in terms of the TopSet slot instead of the TopOpen derived function. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
resstps | ⊢ ((𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | eqid 2735 | . . . . 5 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
3 | 1, 2 | istps 22956 | . . . 4 ⊢ (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾))) |
4 | resttopon2 23192 | . . . 4 ⊢ (((TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)) ∧ 𝐴 ∈ 𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ (Base‘𝐾)))) | |
5 | 3, 4 | sylanb 581 | . . 3 ⊢ ((𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ (Base‘𝐾)))) |
6 | eqid 2735 | . . . . . 6 ⊢ (𝐾 ↾s 𝐴) = (𝐾 ↾s 𝐴) | |
7 | 6, 1 | ressbas 17280 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝐴))) |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝐴))) |
9 | 8 | fveq2d 6911 | . . 3 ⊢ ((𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉) → (TopOn‘(𝐴 ∩ (Base‘𝐾))) = (TopOn‘(Base‘(𝐾 ↾s 𝐴)))) |
10 | 5, 9 | eleqtrd 2841 | . 2 ⊢ ((𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) ∈ (TopOn‘(Base‘(𝐾 ↾s 𝐴)))) |
11 | eqid 2735 | . . 3 ⊢ (Base‘(𝐾 ↾s 𝐴)) = (Base‘(𝐾 ↾s 𝐴)) | |
12 | 6, 2 | resstopn 23210 | . . 3 ⊢ ((TopOpen‘𝐾) ↾t 𝐴) = (TopOpen‘(𝐾 ↾s 𝐴)) |
13 | 11, 12 | istps 22956 | . 2 ⊢ ((𝐾 ↾s 𝐴) ∈ TopSp ↔ ((TopOpen‘𝐾) ↾t 𝐴) ∈ (TopOn‘(Base‘(𝐾 ↾s 𝐴)))) |
14 | 10, 13 | sylibr 234 | 1 ⊢ ((𝐾 ∈ TopSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾s cress 17274 ↾t crest 17467 TopOpenctopn 17468 TopOnctopon 22932 TopSpctps 22954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-tset 17317 df-rest 17469 df-topn 17470 df-topgen 17490 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 |
This theorem is referenced by: submtmd 24128 tsmssubm 24167 xrge0tsms 24870 xrge0tsmsd 33048 xrge0tps 33903 |
Copyright terms: Public domain | W3C validator |