MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resstps Structured version   Visualization version   GIF version

Theorem resstps 22246
Description: A restricted topological space is a topological space. Note that this theorem would not be true if TopSp was defined directly in terms of the TopSet slot instead of the TopOpen derived function. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
resstps ((𝐾 ∈ TopSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ TopSp)

Proof of Theorem resstps
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2738 . . . . 5 (TopOpen‘𝐾) = (TopOpen‘𝐾)
31, 2istps 21991 . . . 4 (𝐾 ∈ TopSp ↔ (TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)))
4 resttopon2 22227 . . . 4 (((TopOpen‘𝐾) ∈ (TopOn‘(Base‘𝐾)) ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ (Base‘𝐾))))
53, 4sylanb 580 . . 3 ((𝐾 ∈ TopSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ (Base‘𝐾))))
6 eqid 2738 . . . . . 6 (𝐾s 𝐴) = (𝐾s 𝐴)
76, 1ressbas 16873 . . . . 5 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
87adantl 481 . . . 4 ((𝐾 ∈ TopSp ∧ 𝐴𝑉) → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
98fveq2d 6760 . . 3 ((𝐾 ∈ TopSp ∧ 𝐴𝑉) → (TopOn‘(𝐴 ∩ (Base‘𝐾))) = (TopOn‘(Base‘(𝐾s 𝐴))))
105, 9eleqtrd 2841 . 2 ((𝐾 ∈ TopSp ∧ 𝐴𝑉) → ((TopOpen‘𝐾) ↾t 𝐴) ∈ (TopOn‘(Base‘(𝐾s 𝐴))))
11 eqid 2738 . . 3 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
126, 2resstopn 22245 . . 3 ((TopOpen‘𝐾) ↾t 𝐴) = (TopOpen‘(𝐾s 𝐴))
1311, 12istps 21991 . 2 ((𝐾s 𝐴) ∈ TopSp ↔ ((TopOpen‘𝐾) ↾t 𝐴) ∈ (TopOn‘(Base‘(𝐾s 𝐴))))
1410, 13sylibr 233 1 ((𝐾 ∈ TopSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cin 3882  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  t crest 17048  TopOpenctopn 17049  TopOnctopon 21967  TopSpctps 21989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-tset 16907  df-rest 17050  df-topn 17051  df-topgen 17071  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004
This theorem is referenced by:  submtmd  23163  tsmssubm  23202  xrge0tsms  23903  xrge0tsmsd  31219  xrge0tps  31794
  Copyright terms: Public domain W3C validator