Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0ring01eqbi | Structured version Visualization version GIF version |
Description: In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (Revised by AV, 23-Jan-2020.) |
Ref | Expression |
---|---|
0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
0ring.0 | ⊢ 0 = (0g‘𝑅) |
0ring01eq.1 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
0ring01eqbi | ⊢ (𝑅 ∈ Ring → (𝐵 ≈ 1o ↔ 1 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ring.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | 1 | fvexi 6673 | . . 3 ⊢ 𝐵 ∈ V |
3 | hashen1 13782 | . . 3 ⊢ (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o)) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o)) |
5 | 0ring.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
6 | 0ring01eq.1 | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
7 | 1, 5, 6 | 0ring01eq 20113 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 0 = 1 ) |
8 | 7 | eqcomd 2765 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 1 = 0 ) |
9 | 8 | ex 417 | . . 3 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 → 1 = 0 )) |
10 | eqcom 2766 | . . . 4 ⊢ ( 1 = 0 ↔ 0 = 1 ) | |
11 | 1, 5, 6 | 01eq0ring 20114 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
12 | fveq2 6659 | . . . . . . 7 ⊢ (𝐵 = { 0 } → (♯‘𝐵) = (♯‘{ 0 })) | |
13 | 5 | fvexi 6673 | . . . . . . . 8 ⊢ 0 ∈ V |
14 | hashsng 13781 | . . . . . . . 8 ⊢ ( 0 ∈ V → (♯‘{ 0 }) = 1) | |
15 | 13, 14 | mp1i 13 | . . . . . . 7 ⊢ (𝐵 = { 0 } → (♯‘{ 0 }) = 1) |
16 | 12, 15 | eqtrd 2794 | . . . . . 6 ⊢ (𝐵 = { 0 } → (♯‘𝐵) = 1) |
17 | 11, 16 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → (♯‘𝐵) = 1) |
18 | 17 | ex 417 | . . . 4 ⊢ (𝑅 ∈ Ring → ( 0 = 1 → (♯‘𝐵) = 1)) |
19 | 10, 18 | syl5bi 245 | . . 3 ⊢ (𝑅 ∈ Ring → ( 1 = 0 → (♯‘𝐵) = 1)) |
20 | 9, 19 | impbid 215 | . 2 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ 1 = 0 )) |
21 | 4, 20 | bitr3d 284 | 1 ⊢ (𝑅 ∈ Ring → (𝐵 ≈ 1o ↔ 1 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 {csn 4523 class class class wbr 5033 ‘cfv 6336 1oc1o 8106 ≈ cen 8525 1c1 10577 ♯chash 13741 Basecbs 16542 0gc0g 16772 1rcur 19320 Ringcrg 19366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-n0 11936 df-xnn0 12008 df-z 12022 df-uz 12284 df-fz 12941 df-hash 13742 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-plusg 16637 df-0g 16774 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-grp 18173 df-minusg 18174 df-mgp 19309 df-ur 19321 df-ring 19368 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |