MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ring01eqbi Structured version   Visualization version   GIF version

Theorem 0ring01eqbi 20045
Description: In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (Revised by AV, 23-Jan-2020.)
Hypotheses
Ref Expression
0ring.b 𝐵 = (Base‘𝑅)
0ring.0 0 = (0g𝑅)
0ring01eq.1 1 = (1r𝑅)
Assertion
Ref Expression
0ring01eqbi (𝑅 ∈ Ring → (𝐵 ≈ 1o1 = 0 ))

Proof of Theorem 0ring01eqbi
StepHypRef Expression
1 0ring.b . . . 4 𝐵 = (Base‘𝑅)
21fvexi 6683 . . 3 𝐵 ∈ V
3 hashen1 13730 . . 3 (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o))
42, 3mp1i 13 . 2 (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o))
5 0ring.0 . . . . . 6 0 = (0g𝑅)
6 0ring01eq.1 . . . . . 6 1 = (1r𝑅)
71, 5, 60ring01eq 20043 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 0 = 1 )
87eqcomd 2827 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 1 = 0 )
98ex 415 . . 3 (𝑅 ∈ Ring → ((♯‘𝐵) = 1 → 1 = 0 ))
10 eqcom 2828 . . . 4 ( 1 = 00 = 1 )
111, 5, 601eq0ring 20044 . . . . . 6 ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 })
12 fveq2 6669 . . . . . . 7 (𝐵 = { 0 } → (♯‘𝐵) = (♯‘{ 0 }))
135fvexi 6683 . . . . . . . 8 0 ∈ V
14 hashsng 13729 . . . . . . . 8 ( 0 ∈ V → (♯‘{ 0 }) = 1)
1513, 14mp1i 13 . . . . . . 7 (𝐵 = { 0 } → (♯‘{ 0 }) = 1)
1612, 15eqtrd 2856 . . . . . 6 (𝐵 = { 0 } → (♯‘𝐵) = 1)
1711, 16syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 0 = 1 ) → (♯‘𝐵) = 1)
1817ex 415 . . . 4 (𝑅 ∈ Ring → ( 0 = 1 → (♯‘𝐵) = 1))
1910, 18syl5bi 244 . . 3 (𝑅 ∈ Ring → ( 1 = 0 → (♯‘𝐵) = 1))
209, 19impbid 214 . 2 (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ 1 = 0 ))
214, 20bitr3d 283 1 (𝑅 ∈ Ring → (𝐵 ≈ 1o1 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  {csn 4566   class class class wbr 5065  cfv 6354  1oc1o 8094  cen 8505  1c1 10537  chash 13689  Basecbs 16482  0gc0g 16712  1rcur 19250  Ringcrg 19296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-fz 12892  df-hash 13690  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-plusg 16577  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-mgp 19239  df-ur 19251  df-ring 19298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator