| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ring01eqbi | Structured version Visualization version GIF version | ||
| Description: In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (Revised by AV, 23-Jan-2020.) |
| Ref | Expression |
|---|---|
| 0ring.b | ⊢ 𝐵 = (Base‘𝑅) |
| 0ring.0 | ⊢ 0 = (0g‘𝑅) |
| 0ring01eq.1 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| 0ring01eqbi | ⊢ (𝑅 ∈ Ring → (𝐵 ≈ 1o ↔ 1 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | 1 | fvexi 6845 | . . 3 ⊢ 𝐵 ∈ V |
| 3 | hashen1 14284 | . . 3 ⊢ (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o)) | |
| 4 | 2, 3 | mp1i 13 | . 2 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ 𝐵 ≈ 1o)) |
| 5 | 0ring.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 6 | 0ring01eq.1 | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
| 7 | 1, 5, 6 | 0ring01eq 20453 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 0 = 1 ) |
| 8 | 7 | eqcomd 2739 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 1 = 0 ) |
| 9 | 8 | ex 412 | . . 3 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 → 1 = 0 )) |
| 10 | eqcom 2740 | . . . 4 ⊢ ( 1 = 0 ↔ 0 = 1 ) | |
| 11 | 1, 5, 6 | 01eq0ring 20454 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) |
| 12 | fveq2 6831 | . . . . . . 7 ⊢ (𝐵 = { 0 } → (♯‘𝐵) = (♯‘{ 0 })) | |
| 13 | 5 | fvexi 6845 | . . . . . . . 8 ⊢ 0 ∈ V |
| 14 | hashsng 14283 | . . . . . . . 8 ⊢ ( 0 ∈ V → (♯‘{ 0 }) = 1) | |
| 15 | 13, 14 | mp1i 13 | . . . . . . 7 ⊢ (𝐵 = { 0 } → (♯‘{ 0 }) = 1) |
| 16 | 12, 15 | eqtrd 2768 | . . . . . 6 ⊢ (𝐵 = { 0 } → (♯‘𝐵) = 1) |
| 17 | 11, 16 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → (♯‘𝐵) = 1) |
| 18 | 17 | ex 412 | . . . 4 ⊢ (𝑅 ∈ Ring → ( 0 = 1 → (♯‘𝐵) = 1)) |
| 19 | 10, 18 | biimtrid 242 | . . 3 ⊢ (𝑅 ∈ Ring → ( 1 = 0 → (♯‘𝐵) = 1)) |
| 20 | 9, 19 | impbid 212 | . 2 ⊢ (𝑅 ∈ Ring → ((♯‘𝐵) = 1 ↔ 1 = 0 )) |
| 21 | 4, 20 | bitr3d 281 | 1 ⊢ (𝑅 ∈ Ring → (𝐵 ≈ 1o ↔ 1 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4577 class class class wbr 5095 ‘cfv 6489 1oc1o 8387 ≈ cen 8876 1c1 11018 ♯chash 14244 Basecbs 17127 0gc0g 17350 1rcur 20107 Ringcrg 20159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-hash 14245 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |