MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemb Structured version   Visualization version   GIF version

Theorem pntlemb 26745
Description: Lemma for pnt 26762. Unpack all the lower bounds contained in 𝑊, in the form they will be used. For comparison with Equation 10.6.27 of [Shapiro], p. 434, 𝑍 is x. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
Assertion
Ref Expression
pntlemb (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
Distinct variable group:   𝐸,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐴(𝑎)   𝐵(𝑎)   𝐶(𝑎)   𝐷(𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemb
StepHypRef Expression
1 pntlem1.z . . . . 5 (𝜑𝑍 ∈ (𝑊[,)+∞))
2 pntlem1.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
3 pntlem1.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
4 pntlem1.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
5 pntlem1.l . . . . . . . 8 (𝜑𝐿 ∈ (0(,)1))
6 pntlem1.d . . . . . . . 8 𝐷 = (𝐴 + 1)
7 pntlem1.f . . . . . . . 8 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
8 pntlem1.u . . . . . . . 8 (𝜑𝑈 ∈ ℝ+)
9 pntlem1.u2 . . . . . . . 8 (𝜑𝑈𝐴)
10 pntlem1.e . . . . . . . 8 𝐸 = (𝑈 / 𝐷)
11 pntlem1.k . . . . . . . 8 𝐾 = (exp‘(𝐵 / 𝐸))
12 pntlem1.y . . . . . . . 8 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
13 pntlem1.x . . . . . . . 8 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
14 pntlem1.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
15 pntlem1.w . . . . . . . 8 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
162, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15pntlema 26744 . . . . . . 7 (𝜑𝑊 ∈ ℝ+)
1716rpred 12772 . . . . . 6 (𝜑𝑊 ∈ ℝ)
18 pnfxr 11029 . . . . . 6 +∞ ∈ ℝ*
19 elico2 13143 . . . . . 6 ((𝑊 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝑍 ∈ (𝑊[,)+∞) ↔ (𝑍 ∈ ℝ ∧ 𝑊𝑍𝑍 < +∞)))
2017, 18, 19sylancl 586 . . . . 5 (𝜑 → (𝑍 ∈ (𝑊[,)+∞) ↔ (𝑍 ∈ ℝ ∧ 𝑊𝑍𝑍 < +∞)))
211, 20mpbid 231 . . . 4 (𝜑 → (𝑍 ∈ ℝ ∧ 𝑊𝑍𝑍 < +∞))
2221simp1d 1141 . . 3 (𝜑𝑍 ∈ ℝ)
2321simp2d 1142 . . 3 (𝜑𝑊𝑍)
2422, 16, 23rpgecld 12811 . 2 (𝜑𝑍 ∈ ℝ+)
25 1re 10975 . . . . . . 7 1 ∈ ℝ
2625a1i 11 . . . . . 6 (𝜑 → 1 ∈ ℝ)
27 ere 15798 . . . . . . 7 e ∈ ℝ
2827a1i 11 . . . . . 6 (𝜑 → e ∈ ℝ)
2924rpsqrtcld 15123 . . . . . . 7 (𝜑 → (√‘𝑍) ∈ ℝ+)
3029rpred 12772 . . . . . 6 (𝜑 → (√‘𝑍) ∈ ℝ)
31 1lt2 12144 . . . . . . . 8 1 < 2
32 egt2lt3 15915 . . . . . . . . 9 (2 < e ∧ e < 3)
3332simpli 484 . . . . . . . 8 2 < e
34 2re 12047 . . . . . . . . 9 2 ∈ ℝ
3525, 34, 27lttri 11101 . . . . . . . 8 ((1 < 2 ∧ 2 < e) → 1 < e)
3631, 33, 35mp2an 689 . . . . . . 7 1 < e
3736a1i 11 . . . . . 6 (𝜑 → 1 < e)
38 4re 12057 . . . . . . . 8 4 ∈ ℝ
3938a1i 11 . . . . . . 7 (𝜑 → 4 ∈ ℝ)
4032simpri 486 . . . . . . . . 9 e < 3
41 3lt4 12147 . . . . . . . . 9 3 < 4
42 3re 12053 . . . . . . . . . 10 3 ∈ ℝ
4327, 42, 38lttri 11101 . . . . . . . . 9 ((e < 3 ∧ 3 < 4) → e < 4)
4440, 41, 43mp2an 689 . . . . . . . 8 e < 4
4544a1i 11 . . . . . . 7 (𝜑 → e < 4)
46 4nn 12056 . . . . . . . . . . 11 4 ∈ ℕ
47 nnrp 12741 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
4846, 47ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
492, 3, 4, 5, 6, 7pntlemd 26742 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
5049simp1d 1141 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ+)
512, 3, 4, 5, 6, 7, 8, 9, 10, 11pntlemc 26743 . . . . . . . . . . . 12 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
5251simp1d 1141 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ+)
5350, 52rpmulcld 12788 . . . . . . . . . 10 (𝜑 → (𝐿 · 𝐸) ∈ ℝ+)
54 rpdivcl 12755 . . . . . . . . . 10 ((4 ∈ ℝ+ ∧ (𝐿 · 𝐸) ∈ ℝ+) → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
5548, 53, 54sylancr 587 . . . . . . . . 9 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ+)
5655rpred 12772 . . . . . . . 8 (𝜑 → (4 / (𝐿 · 𝐸)) ∈ ℝ)
5753rpred 12772 . . . . . . . . . . . 12 (𝜑 → (𝐿 · 𝐸) ∈ ℝ)
5852rpred 12772 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ)
5950rpred 12772 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ ℝ)
60 eliooord 13138 . . . . . . . . . . . . . . . 16 (𝐿 ∈ (0(,)1) → (0 < 𝐿𝐿 < 1))
615, 60syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (0 < 𝐿𝐿 < 1))
6261simprd 496 . . . . . . . . . . . . . 14 (𝜑𝐿 < 1)
6359, 26, 52, 62ltmul1dd 12827 . . . . . . . . . . . . 13 (𝜑 → (𝐿 · 𝐸) < (1 · 𝐸))
6452rpcnd 12774 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ ℂ)
6564mulid2d 10993 . . . . . . . . . . . . 13 (𝜑 → (1 · 𝐸) = 𝐸)
6663, 65breqtrd 5100 . . . . . . . . . . . 12 (𝜑 → (𝐿 · 𝐸) < 𝐸)
6751simp3d 1143 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
6867simp1d 1141 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ (0(,)1))
69 eliooord 13138 . . . . . . . . . . . . . 14 (𝐸 ∈ (0(,)1) → (0 < 𝐸𝐸 < 1))
7068, 69syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 < 𝐸𝐸 < 1))
7170simprd 496 . . . . . . . . . . . 12 (𝜑𝐸 < 1)
7257, 58, 26, 66, 71lttrd 11136 . . . . . . . . . . 11 (𝜑 → (𝐿 · 𝐸) < 1)
73 4pos 12080 . . . . . . . . . . . . 13 0 < 4
7439, 73jctir 521 . . . . . . . . . . . 12 (𝜑 → (4 ∈ ℝ ∧ 0 < 4))
75 ltmul2 11826 . . . . . . . . . . . 12 (((𝐿 · 𝐸) ∈ ℝ ∧ 1 ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((𝐿 · 𝐸) < 1 ↔ (4 · (𝐿 · 𝐸)) < (4 · 1)))
7657, 26, 74, 75syl3anc 1370 . . . . . . . . . . 11 (𝜑 → ((𝐿 · 𝐸) < 1 ↔ (4 · (𝐿 · 𝐸)) < (4 · 1)))
7772, 76mpbid 231 . . . . . . . . . 10 (𝜑 → (4 · (𝐿 · 𝐸)) < (4 · 1))
78 4cn 12058 . . . . . . . . . . 11 4 ∈ ℂ
7978mulid1i 10979 . . . . . . . . . 10 (4 · 1) = 4
8077, 79breqtrdi 5115 . . . . . . . . 9 (𝜑 → (4 · (𝐿 · 𝐸)) < 4)
8139, 39, 53ltmuldivd 12819 . . . . . . . . 9 (𝜑 → ((4 · (𝐿 · 𝐸)) < 4 ↔ 4 < (4 / (𝐿 · 𝐸))))
8280, 81mpbid 231 . . . . . . . 8 (𝜑 → 4 < (4 / (𝐿 · 𝐸)))
8312simpld 495 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ+)
8483, 55rpaddcld 12787 . . . . . . . . . 10 (𝜑 → (𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+)
8584rpred 12772 . . . . . . . . 9 (𝜑 → (𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ)
8656, 83ltaddrp2d 12806 . . . . . . . . 9 (𝜑 → (4 / (𝐿 · 𝐸)) < (𝑌 + (4 / (𝐿 · 𝐸))))
8785resqcld 13965 . . . . . . . . . . . 12 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ)
8813simpld 495 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ ℝ+)
8951simp2d 1142 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℝ+)
90 2z 12352 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
91 rpexpcl 13801 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐾↑2) ∈ ℝ+)
9289, 90, 91sylancl 586 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐾↑2) ∈ ℝ+)
9388, 92rpmulcld 12788 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 · (𝐾↑2)) ∈ ℝ+)
94 4z 12354 . . . . . . . . . . . . . . . 16 4 ∈ ℤ
95 rpexpcl 13801 . . . . . . . . . . . . . . . 16 (((𝑋 · (𝐾↑2)) ∈ ℝ+ ∧ 4 ∈ ℤ) → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+)
9693, 94, 95sylancl 586 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ+)
97 3nn0 12251 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℕ0
98 2nn 12046 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
9997, 98decnncl 12457 . . . . . . . . . . . . . . . . . . . . 21 32 ∈ ℕ
100 nnrp 12741 . . . . . . . . . . . . . . . . . . . . 21 (32 ∈ ℕ → 32 ∈ ℝ+)
10199, 100ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 32 ∈ ℝ+
102 rpmulcl 12753 . . . . . . . . . . . . . . . . . . . 20 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
103101, 4, 102sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (32 · 𝐵) ∈ ℝ+)
10467simp3d 1143 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑈𝐸) ∈ ℝ+)
105 rpexpcl 13801 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
10652, 90, 105sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸↑2) ∈ ℝ+)
10750, 106rpmulcld 12788 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
108104, 107rpmulcld 12788 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑈𝐸) · (𝐿 · (𝐸↑2))) ∈ ℝ+)
109103, 108rpdivcld 12789 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) ∈ ℝ+)
110 3rp 12736 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℝ+
111 rpmulcl 12753 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑈 · 3) ∈ ℝ+)
1128, 110, 111sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑈 · 3) ∈ ℝ+)
113112, 14rpaddcld 12787 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ+)
114109, 113rpmulcld 12788 . . . . . . . . . . . . . . . . 17 (𝜑 → (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ+)
115114rpred 12772 . . . . . . . . . . . . . . . 16 (𝜑 → (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ)
116115rpefcld 15814 . . . . . . . . . . . . . . 15 (𝜑 → (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) ∈ ℝ+)
11796, 116rpaddcld 12787 . . . . . . . . . . . . . 14 (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) ∈ ℝ+)
11887, 117ltaddrpd 12805 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) < (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))))
119118, 15breqtrrdi 5116 . . . . . . . . . . . 12 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) < 𝑊)
12087, 17, 22, 119, 23ltletrd 11135 . . . . . . . . . . 11 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) < 𝑍)
12124rprege0d 12779 . . . . . . . . . . . 12 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
122 resqrtth 14967 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍)↑2) = 𝑍)
123121, 122syl 17 . . . . . . . . . . 11 (𝜑 → ((√‘𝑍)↑2) = 𝑍)
124120, 123breqtrrd 5102 . . . . . . . . . 10 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) < ((√‘𝑍)↑2))
12584rprege0d 12779 . . . . . . . . . . 11 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ ∧ 0 ≤ (𝑌 + (4 / (𝐿 · 𝐸)))))
12629rprege0d 12779 . . . . . . . . . . 11 (𝜑 → ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍)))
127 lt2sq 13852 . . . . . . . . . . 11 ((((𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ ∧ 0 ≤ (𝑌 + (4 / (𝐿 · 𝐸)))) ∧ ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍))) → ((𝑌 + (4 / (𝐿 · 𝐸))) < (√‘𝑍) ↔ ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) < ((√‘𝑍)↑2)))
128125, 126, 127syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸))) < (√‘𝑍) ↔ ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) < ((√‘𝑍)↑2)))
129124, 128mpbird 256 . . . . . . . . 9 (𝜑 → (𝑌 + (4 / (𝐿 · 𝐸))) < (√‘𝑍))
13056, 85, 30, 86, 129lttrd 11136 . . . . . . . 8 (𝜑 → (4 / (𝐿 · 𝐸)) < (√‘𝑍))
13139, 56, 30, 82, 130lttrd 11136 . . . . . . 7 (𝜑 → 4 < (√‘𝑍))
13228, 39, 30, 45, 131lttrd 11136 . . . . . 6 (𝜑 → e < (√‘𝑍))
13326, 28, 30, 37, 132lttrd 11136 . . . . 5 (𝜑 → 1 < (√‘𝑍))
134 0le1 11498 . . . . . . 7 0 ≤ 1
135134a1i 11 . . . . . 6 (𝜑 → 0 ≤ 1)
136 lt2sq 13852 . . . . . 6 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((√‘𝑍) ∈ ℝ ∧ 0 ≤ (√‘𝑍))) → (1 < (√‘𝑍) ↔ (1↑2) < ((√‘𝑍)↑2)))
13726, 135, 126, 136syl21anc 835 . . . . 5 (𝜑 → (1 < (√‘𝑍) ↔ (1↑2) < ((√‘𝑍)↑2)))
138133, 137mpbid 231 . . . 4 (𝜑 → (1↑2) < ((√‘𝑍)↑2))
139 sq1 13912 . . . . 5 (1↑2) = 1
140139a1i 11 . . . 4 (𝜑 → (1↑2) = 1)
141138, 140, 1233brtr3d 5105 . . 3 (𝜑 → 1 < 𝑍)
14228, 30, 132ltled 11123 . . 3 (𝜑 → e ≤ (√‘𝑍))
14322, 83rerpdivcld 12803 . . . 4 (𝜑 → (𝑍 / 𝑌) ∈ ℝ)
14483rpred 12772 . . . . . . 7 (𝜑𝑌 ∈ ℝ)
145144, 55ltaddrpd 12805 . . . . . . . 8 (𝜑𝑌 < (𝑌 + (4 / (𝐿 · 𝐸))))
146144, 85, 30, 145, 129lttrd 11136 . . . . . . 7 (𝜑𝑌 < (√‘𝑍))
147144, 30, 29, 146ltmul2dd 12828 . . . . . 6 (𝜑 → ((√‘𝑍) · 𝑌) < ((√‘𝑍) · (√‘𝑍)))
148 remsqsqrt 14968 . . . . . . 7 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
149121, 148syl 17 . . . . . 6 (𝜑 → ((√‘𝑍) · (√‘𝑍)) = 𝑍)
150147, 149breqtrd 5100 . . . . 5 (𝜑 → ((√‘𝑍) · 𝑌) < 𝑍)
15130, 22, 83ltmuldivd 12819 . . . . 5 (𝜑 → (((√‘𝑍) · 𝑌) < 𝑍 ↔ (√‘𝑍) < (𝑍 / 𝑌)))
152150, 151mpbid 231 . . . 4 (𝜑 → (√‘𝑍) < (𝑍 / 𝑌))
15330, 143, 152ltled 11123 . . 3 (𝜑 → (√‘𝑍) ≤ (𝑍 / 𝑌))
154141, 142, 1533jca 1127 . 2 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
15556, 30, 130ltled 11123 . . 3 (𝜑 → (4 / (𝐿 · 𝐸)) ≤ (√‘𝑍))
15688relogcld 25778 . . . . . 6 (𝜑 → (log‘𝑋) ∈ ℝ)
15789rpred 12772 . . . . . . 7 (𝜑𝐾 ∈ ℝ)
15867simp2d 1142 . . . . . . 7 (𝜑 → 1 < 𝐾)
159157, 158rplogcld 25784 . . . . . 6 (𝜑 → (log‘𝐾) ∈ ℝ+)
160156, 159rerpdivcld 12803 . . . . 5 (𝜑 → ((log‘𝑋) / (log‘𝐾)) ∈ ℝ)
161 readdcl 10954 . . . . 5 ((((log‘𝑋) / (log‘𝐾)) ∈ ℝ ∧ 2 ∈ ℝ) → (((log‘𝑋) / (log‘𝐾)) + 2) ∈ ℝ)
162160, 34, 161sylancl 586 . . . 4 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ∈ ℝ)
16324relogcld 25778 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℝ)
164163, 159rerpdivcld 12803 . . . . 5 (𝜑 → ((log‘𝑍) / (log‘𝐾)) ∈ ℝ)
165 nndivre 12014 . . . . 5 ((((log‘𝑍) / (log‘𝐾)) ∈ ℝ ∧ 4 ∈ ℕ) → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
166164, 46, 165sylancl 586 . . . 4 (𝜑 → (((log‘𝑍) / (log‘𝐾)) / 4) ∈ ℝ)
16793relogcld 25778 . . . . . 6 (𝜑 → (log‘(𝑋 · (𝐾↑2))) ∈ ℝ)
168 nndivre 12014 . . . . . . 7 (((log‘𝑍) ∈ ℝ ∧ 4 ∈ ℕ) → ((log‘𝑍) / 4) ∈ ℝ)
169163, 46, 168sylancl 586 . . . . . 6 (𝜑 → ((log‘𝑍) / 4) ∈ ℝ)
170 relogexp 25751 . . . . . . . . 9 (((𝑋 · (𝐾↑2)) ∈ ℝ+ ∧ 4 ∈ ℤ) → (log‘((𝑋 · (𝐾↑2))↑4)) = (4 · (log‘(𝑋 · (𝐾↑2)))))
17193, 94, 170sylancl 586 . . . . . . . 8 (𝜑 → (log‘((𝑋 · (𝐾↑2))↑4)) = (4 · (log‘(𝑋 · (𝐾↑2)))))
17296rpred 12772 . . . . . . . . . 10 (𝜑 → ((𝑋 · (𝐾↑2))↑4) ∈ ℝ)
173117rpred 12772 . . . . . . . . . 10 (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) ∈ ℝ)
174172, 116ltaddrpd 12805 . . . . . . . . . 10 (𝜑 → ((𝑋 · (𝐾↑2))↑4) < (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
175 rpexpcl 13801 . . . . . . . . . . . . . 14 (((𝑌 + (4 / (𝐿 · 𝐸))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+)
17684, 90, 175sylancl 586 . . . . . . . . . . . . 13 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℝ+)
177173, 176ltaddrpd 12805 . . . . . . . . . . . 12 (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) < ((((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) + ((𝑌 + (4 / (𝐿 · 𝐸)))↑2)))
17887recnd 11003 . . . . . . . . . . . . . 14 (𝜑 → ((𝑌 + (4 / (𝐿 · 𝐸)))↑2) ∈ ℂ)
179117rpcnd 12774 . . . . . . . . . . . . . 14 (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) ∈ ℂ)
180178, 179addcomd 11177 . . . . . . . . . . . . 13 (𝜑 → (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))))) = ((((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) + ((𝑌 + (4 / (𝐿 · 𝐸)))↑2)))
18115, 180eqtrid 2790 . . . . . . . . . . . 12 (𝜑𝑊 = ((((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) + ((𝑌 + (4 / (𝐿 · 𝐸)))↑2)))
182177, 181breqtrrd 5102 . . . . . . . . . . 11 (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) < 𝑊)
183173, 17, 22, 182, 23ltletrd 11135 . . . . . . . . . 10 (𝜑 → (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))) < 𝑍)
184172, 173, 22, 174, 183lttrd 11136 . . . . . . . . 9 (𝜑 → ((𝑋 · (𝐾↑2))↑4) < 𝑍)
185 logltb 25755 . . . . . . . . . 10 ((((𝑋 · (𝐾↑2))↑4) ∈ ℝ+𝑍 ∈ ℝ+) → (((𝑋 · (𝐾↑2))↑4) < 𝑍 ↔ (log‘((𝑋 · (𝐾↑2))↑4)) < (log‘𝑍)))
18696, 24, 185syl2anc 584 . . . . . . . . 9 (𝜑 → (((𝑋 · (𝐾↑2))↑4) < 𝑍 ↔ (log‘((𝑋 · (𝐾↑2))↑4)) < (log‘𝑍)))
187184, 186mpbid 231 . . . . . . . 8 (𝜑 → (log‘((𝑋 · (𝐾↑2))↑4)) < (log‘𝑍))
188171, 187eqbrtrrd 5098 . . . . . . 7 (𝜑 → (4 · (log‘(𝑋 · (𝐾↑2)))) < (log‘𝑍))
189 ltmuldiv2 11849 . . . . . . . 8 (((log‘(𝑋 · (𝐾↑2))) ∈ ℝ ∧ (log‘𝑍) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((4 · (log‘(𝑋 · (𝐾↑2)))) < (log‘𝑍) ↔ (log‘(𝑋 · (𝐾↑2))) < ((log‘𝑍) / 4)))
190167, 163, 74, 189syl3anc 1370 . . . . . . 7 (𝜑 → ((4 · (log‘(𝑋 · (𝐾↑2)))) < (log‘𝑍) ↔ (log‘(𝑋 · (𝐾↑2))) < ((log‘𝑍) / 4)))
191188, 190mpbid 231 . . . . . 6 (𝜑 → (log‘(𝑋 · (𝐾↑2))) < ((log‘𝑍) / 4))
192167, 169, 159, 191ltdiv1dd 12829 . . . . 5 (𝜑 → ((log‘(𝑋 · (𝐾↑2))) / (log‘𝐾)) < (((log‘𝑍) / 4) / (log‘𝐾)))
19388, 92relogmuld 25780 . . . . . . . 8 (𝜑 → (log‘(𝑋 · (𝐾↑2))) = ((log‘𝑋) + (log‘(𝐾↑2))))
194 relogexp 25751 . . . . . . . . . 10 ((𝐾 ∈ ℝ+ ∧ 2 ∈ ℤ) → (log‘(𝐾↑2)) = (2 · (log‘𝐾)))
19589, 90, 194sylancl 586 . . . . . . . . 9 (𝜑 → (log‘(𝐾↑2)) = (2 · (log‘𝐾)))
196195oveq2d 7291 . . . . . . . 8 (𝜑 → ((log‘𝑋) + (log‘(𝐾↑2))) = ((log‘𝑋) + (2 · (log‘𝐾))))
197193, 196eqtrd 2778 . . . . . . 7 (𝜑 → (log‘(𝑋 · (𝐾↑2))) = ((log‘𝑋) + (2 · (log‘𝐾))))
198197oveq1d 7290 . . . . . 6 (𝜑 → ((log‘(𝑋 · (𝐾↑2))) / (log‘𝐾)) = (((log‘𝑋) + (2 · (log‘𝐾))) / (log‘𝐾)))
199156recnd 11003 . . . . . . 7 (𝜑 → (log‘𝑋) ∈ ℂ)
200 2cnd 12051 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
201159rpcnd 12774 . . . . . . . 8 (𝜑 → (log‘𝐾) ∈ ℂ)
202200, 201mulcld 10995 . . . . . . 7 (𝜑 → (2 · (log‘𝐾)) ∈ ℂ)
203159rpcnne0d 12781 . . . . . . 7 (𝜑 → ((log‘𝐾) ∈ ℂ ∧ (log‘𝐾) ≠ 0))
204 divdir 11658 . . . . . . 7 (((log‘𝑋) ∈ ℂ ∧ (2 · (log‘𝐾)) ∈ ℂ ∧ ((log‘𝐾) ∈ ℂ ∧ (log‘𝐾) ≠ 0)) → (((log‘𝑋) + (2 · (log‘𝐾))) / (log‘𝐾)) = (((log‘𝑋) / (log‘𝐾)) + ((2 · (log‘𝐾)) / (log‘𝐾))))
205199, 202, 203, 204syl3anc 1370 . . . . . 6 (𝜑 → (((log‘𝑋) + (2 · (log‘𝐾))) / (log‘𝐾)) = (((log‘𝑋) / (log‘𝐾)) + ((2 · (log‘𝐾)) / (log‘𝐾))))
206203simprd 496 . . . . . . . 8 (𝜑 → (log‘𝐾) ≠ 0)
207200, 201, 206divcan4d 11757 . . . . . . 7 (𝜑 → ((2 · (log‘𝐾)) / (log‘𝐾)) = 2)
208207oveq2d 7291 . . . . . 6 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + ((2 · (log‘𝐾)) / (log‘𝐾))) = (((log‘𝑋) / (log‘𝐾)) + 2))
209198, 205, 2083eqtrd 2782 . . . . 5 (𝜑 → ((log‘(𝑋 · (𝐾↑2))) / (log‘𝐾)) = (((log‘𝑋) / (log‘𝐾)) + 2))
210163recnd 11003 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
211 rpcnne0 12748 . . . . . . 7 (4 ∈ ℝ+ → (4 ∈ ℂ ∧ 4 ≠ 0))
21248, 211mp1i 13 . . . . . 6 (𝜑 → (4 ∈ ℂ ∧ 4 ≠ 0))
213 divdiv32 11683 . . . . . 6 (((log‘𝑍) ∈ ℂ ∧ (4 ∈ ℂ ∧ 4 ≠ 0) ∧ ((log‘𝐾) ∈ ℂ ∧ (log‘𝐾) ≠ 0)) → (((log‘𝑍) / 4) / (log‘𝐾)) = (((log‘𝑍) / (log‘𝐾)) / 4))
214210, 212, 203, 213syl3anc 1370 . . . . 5 (𝜑 → (((log‘𝑍) / 4) / (log‘𝐾)) = (((log‘𝑍) / (log‘𝐾)) / 4))
215192, 209, 2143brtr3d 5105 . . . 4 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) < (((log‘𝑍) / (log‘𝐾)) / 4))
216162, 166, 215ltled 11123 . . 3 (𝜑 → (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4))
217113rpred 12772 . . . . 5 (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ)
218108, 103rpdivcld 12789 . . . . . . 7 (𝜑 → (((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵)) ∈ ℝ+)
219218rpred 12772 . . . . . 6 (𝜑 → (((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵)) ∈ ℝ)
220219, 163remulcld 11005 . . . . 5 (𝜑 → ((((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵)) · (log‘𝑍)) ∈ ℝ)
221113rpcnd 12774 . . . . . . . . 9 (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℂ)
222108rpcnne0d 12781 . . . . . . . . 9 (𝜑 → (((𝑈𝐸) · (𝐿 · (𝐸↑2))) ∈ ℂ ∧ ((𝑈𝐸) · (𝐿 · (𝐸↑2))) ≠ 0))
223103rpcnne0d 12781 . . . . . . . . 9 (𝜑 → ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0))
224 divdiv2 11687 . . . . . . . . 9 ((((𝑈 · 3) + 𝐶) ∈ ℂ ∧ (((𝑈𝐸) · (𝐿 · (𝐸↑2))) ∈ ℂ ∧ ((𝑈𝐸) · (𝐿 · (𝐸↑2))) ≠ 0) ∧ ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0)) → (((𝑈 · 3) + 𝐶) / (((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵))) = ((((𝑈 · 3) + 𝐶) · (32 · 𝐵)) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))))
225221, 222, 223, 224syl3anc 1370 . . . . . . . 8 (𝜑 → (((𝑈 · 3) + 𝐶) / (((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵))) = ((((𝑈 · 3) + 𝐶) · (32 · 𝐵)) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))))
226103rpcnd 12774 . . . . . . . . . 10 (𝜑 → (32 · 𝐵) ∈ ℂ)
227221, 226mulcomd 10996 . . . . . . . . 9 (𝜑 → (((𝑈 · 3) + 𝐶) · (32 · 𝐵)) = ((32 · 𝐵) · ((𝑈 · 3) + 𝐶)))
228227oveq1d 7290 . . . . . . . 8 (𝜑 → ((((𝑈 · 3) + 𝐶) · (32 · 𝐵)) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) = (((32 · 𝐵) · ((𝑈 · 3) + 𝐶)) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))))
229 div23 11652 . . . . . . . . 9 (((32 · 𝐵) ∈ ℂ ∧ ((𝑈 · 3) + 𝐶) ∈ ℂ ∧ (((𝑈𝐸) · (𝐿 · (𝐸↑2))) ∈ ℂ ∧ ((𝑈𝐸) · (𝐿 · (𝐸↑2))) ≠ 0)) → (((32 · 𝐵) · ((𝑈 · 3) + 𝐶)) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) = (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))
230226, 221, 222, 229syl3anc 1370 . . . . . . . 8 (𝜑 → (((32 · 𝐵) · ((𝑈 · 3) + 𝐶)) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) = (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))
231225, 228, 2303eqtrd 2782 . . . . . . 7 (𝜑 → (((𝑈 · 3) + 𝐶) / (((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵))) = (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))
232115reefcld 15797 . . . . . . . . . 10 (𝜑 → (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) ∈ ℝ)
233232, 96ltaddrp2d 12806 . . . . . . . . . 10 (𝜑 → (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) < (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
234232, 173, 22, 233, 183lttrd 11136 . . . . . . . . 9 (𝜑 → (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) < 𝑍)
23524reeflogd 25779 . . . . . . . . 9 (𝜑 → (exp‘(log‘𝑍)) = 𝑍)
236234, 235breqtrrd 5102 . . . . . . . 8 (𝜑 → (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) < (exp‘(log‘𝑍)))
237 eflt 15826 . . . . . . . . 9 (((((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) ∈ ℝ ∧ (log‘𝑍) ∈ ℝ) → ((((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) < (log‘𝑍) ↔ (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) < (exp‘(log‘𝑍))))
238115, 163, 237syl2anc 584 . . . . . . . 8 (𝜑 → ((((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) < (log‘𝑍) ↔ (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶))) < (exp‘(log‘𝑍))))
239236, 238mpbird 256 . . . . . . 7 (𝜑 → (((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)) < (log‘𝑍))
240231, 239eqbrtrd 5096 . . . . . 6 (𝜑 → (((𝑈 · 3) + 𝐶) / (((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵))) < (log‘𝑍))
241217, 163, 218ltdivmuld 12823 . . . . . 6 (𝜑 → ((((𝑈 · 3) + 𝐶) / (((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵))) < (log‘𝑍) ↔ ((𝑈 · 3) + 𝐶) < ((((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵)) · (log‘𝑍))))
242240, 241mpbid 231 . . . . 5 (𝜑 → ((𝑈 · 3) + 𝐶) < ((((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵)) · (log‘𝑍)))
243217, 220, 242ltled 11123 . . . 4 (𝜑 → ((𝑈 · 3) + 𝐶) ≤ ((((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵)) · (log‘𝑍)))
244104rpcnd 12774 . . . . . 6 (𝜑 → (𝑈𝐸) ∈ ℂ)
245107rpcnd 12774 . . . . . 6 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℂ)
246 divass 11651 . . . . . 6 (((𝑈𝐸) ∈ ℂ ∧ (𝐿 · (𝐸↑2)) ∈ ℂ ∧ ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0)) → (((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵)) = ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))))
247244, 245, 223, 246syl3anc 1370 . . . . 5 (𝜑 → (((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵)) = ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))))
248247oveq1d 7290 . . . 4 (𝜑 → ((((𝑈𝐸) · (𝐿 · (𝐸↑2))) / (32 · 𝐵)) · (log‘𝑍)) = (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))
249243, 248breqtrd 5100 . . 3 (𝜑 → ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))
250155, 216, 2493jca 1127 . 2 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
25124, 154, 2503jca 1127 1 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  3c3 12029  4c4 12030  cz 12319  cdc 12437  +crp 12730  (,)cioo 13079  [,)cico 13081  cexp 13782  csqrt 14944  expce 15771  eceu 15772  logclog 25710  ψcchp 26242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712
This theorem is referenced by:  pntlemg  26746  pntlemh  26747  pntlemn  26748  pntlemq  26749  pntlemr  26750  pntlemj  26751  pntlemf  26753  pntlemk  26754  pntlemo  26755
  Copyright terms: Public domain W3C validator