MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3 Structured version   Visualization version   GIF version

Theorem selberg3 27286
Description: Introduce a log weighting on the summands of ฮฃ๐‘š ยท ๐‘› โ‰ค ๐‘ฅ, ฮ›(๐‘š)ฮ›(๐‘›), the core of selberg2 27278 (written here as ฮฃ๐‘› โ‰ค ๐‘ฅ, ฮ›(๐‘›)ฯˆ(๐‘ฅ / ๐‘›)). Equation 10.6.7 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selberg3 (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ)))) โˆˆ ๐‘‚(1)
Distinct variable group:   ๐‘ฅ,๐‘›

Proof of Theorem selberg3
StepHypRef Expression
1 elioore 13358 . . . . . . . . . . . . . 14 (๐‘ฅ โˆˆ (1(,)+โˆž) โ†’ ๐‘ฅ โˆˆ โ„)
21adantl 482 . . . . . . . . . . . . 13 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ๐‘ฅ โˆˆ โ„)
3 chpcl 26852 . . . . . . . . . . . . 13 (๐‘ฅ โˆˆ โ„ โ†’ (ฯˆโ€˜๐‘ฅ) โˆˆ โ„)
42, 3syl 17 . . . . . . . . . . . 12 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฯˆโ€˜๐‘ฅ) โˆˆ โ„)
5 1rp 12982 . . . . . . . . . . . . . . 15 1 โˆˆ โ„+
65a1i 11 . . . . . . . . . . . . . 14 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 1 โˆˆ โ„+)
7 1red 11219 . . . . . . . . . . . . . . 15 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 1 โˆˆ โ„)
8 eliooord 13387 . . . . . . . . . . . . . . . . 17 (๐‘ฅ โˆˆ (1(,)+โˆž) โ†’ (1 < ๐‘ฅ โˆง ๐‘ฅ < +โˆž))
98adantl 482 . . . . . . . . . . . . . . . 16 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (1 < ๐‘ฅ โˆง ๐‘ฅ < +โˆž))
109simpld 495 . . . . . . . . . . . . . . 15 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 1 < ๐‘ฅ)
117, 2, 10ltled 11366 . . . . . . . . . . . . . 14 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 1 โ‰ค ๐‘ฅ)
122, 6, 11rpgecld 13059 . . . . . . . . . . . . 13 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ๐‘ฅ โˆˆ โ„+)
1312relogcld 26355 . . . . . . . . . . . 12 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (logโ€˜๐‘ฅ) โˆˆ โ„)
144, 13remulcld 11248 . . . . . . . . . . 11 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) โˆˆ โ„)
1514recnd 11246 . . . . . . . . . 10 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) โˆˆ โ„‚)
16 fzfid 13942 . . . . . . . . . . . 12 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (1...(โŒŠโ€˜๐‘ฅ)) โˆˆ Fin)
17 elfznn 13534 . . . . . . . . . . . . . . 15 (๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ)) โ†’ ๐‘› โˆˆ โ„•)
1817adantl 482 . . . . . . . . . . . . . 14 (((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ๐‘› โˆˆ โ„•)
19 vmacl 26846 . . . . . . . . . . . . . 14 (๐‘› โˆˆ โ„• โ†’ (ฮ›โ€˜๐‘›) โˆˆ โ„)
2018, 19syl 17 . . . . . . . . . . . . 13 (((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (ฮ›โ€˜๐‘›) โˆˆ โ„)
212adantr 481 . . . . . . . . . . . . . . 15 (((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ๐‘ฅ โˆˆ โ„)
2221, 18nndivred 12270 . . . . . . . . . . . . . 14 (((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (๐‘ฅ / ๐‘›) โˆˆ โ„)
23 chpcl 26852 . . . . . . . . . . . . . 14 ((๐‘ฅ / ๐‘›) โˆˆ โ„ โ†’ (ฯˆโ€˜(๐‘ฅ / ๐‘›)) โˆˆ โ„)
2422, 23syl 17 . . . . . . . . . . . . 13 (((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (ฯˆโ€˜(๐‘ฅ / ๐‘›)) โˆˆ โ„)
2520, 24remulcld 11248 . . . . . . . . . . . 12 (((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) โˆˆ โ„)
2616, 25fsumrecl 15684 . . . . . . . . . . 11 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) โˆˆ โ„)
2726recnd 11246 . . . . . . . . . 10 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) โˆˆ โ„‚)
28 2re 12290 . . . . . . . . . . . . . . 15 2 โˆˆ โ„
2928a1i 11 . . . . . . . . . . . . . 14 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 2 โˆˆ โ„)
302, 10rplogcld 26361 . . . . . . . . . . . . . 14 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (logโ€˜๐‘ฅ) โˆˆ โ„+)
3129, 30rerpdivcld 13051 . . . . . . . . . . . . 13 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (2 / (logโ€˜๐‘ฅ)) โˆˆ โ„)
3218nnrpd 13018 . . . . . . . . . . . . . . . 16 (((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ๐‘› โˆˆ โ„+)
3332relogcld 26355 . . . . . . . . . . . . . . 15 (((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (logโ€˜๐‘›) โˆˆ โ„)
3425, 33remulcld 11248 . . . . . . . . . . . . . 14 (((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›)) โˆˆ โ„)
3516, 34fsumrecl 15684 . . . . . . . . . . . . 13 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›)) โˆˆ โ„)
3631, 35remulcld 11248 . . . . . . . . . . . 12 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆˆ โ„)
3736, 26resubcld 11646 . . . . . . . . . . 11 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) โˆˆ โ„)
3837recnd 11246 . . . . . . . . . 10 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) โˆˆ โ„‚)
3915, 27, 38addassd 11240 . . . . . . . . 9 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) + (((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))))) = (((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) + (((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))))))
40 2cnd 12294 . . . . . . . . . . . . 13 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 2 โˆˆ โ„‚)
4113recnd 11246 . . . . . . . . . . . . 13 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (logโ€˜๐‘ฅ) โˆˆ โ„‚)
4230rpne0d 13025 . . . . . . . . . . . . 13 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (logโ€˜๐‘ฅ) โ‰  0)
4340, 41, 42divcld 11994 . . . . . . . . . . . 12 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (2 / (logโ€˜๐‘ฅ)) โˆˆ โ„‚)
4435recnd 11246 . . . . . . . . . . . 12 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›)) โˆˆ โ„‚)
4543, 44mulcld 11238 . . . . . . . . . . 11 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆˆ โ„‚)
4627, 45pncan3d 11578 . . . . . . . . . 10 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) + (((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))))) = ((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))))
4746oveq2d 7427 . . . . . . . . 9 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) + (((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))))) = (((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›)))))
4839, 47eqtr2d 2773 . . . . . . . 8 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›)))) = ((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) + (((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))))))
4948oveq1d 7426 . . . . . . 7 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ฅ) = (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) + (((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))))) / ๐‘ฅ))
5014, 26readdcld 11247 . . . . . . . . 9 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) โˆˆ โ„)
5150recnd 11246 . . . . . . . 8 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) โˆˆ โ„‚)
522recnd 11246 . . . . . . . 8 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ๐‘ฅ โˆˆ โ„‚)
5312rpne0d 13025 . . . . . . . 8 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ๐‘ฅ โ‰  0)
5451, 38, 52, 53divdird 12032 . . . . . . 7 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) + (((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))))) / ๐‘ฅ) = (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) + ((((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ)))
5549, 54eqtrd 2772 . . . . . 6 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ฅ) = (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) + ((((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ)))
5655oveq1d 7426 . . . . 5 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ))) = ((((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) + ((((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ)) โˆ’ (2 ยท (logโ€˜๐‘ฅ))))
5750, 12rerpdivcld 13051 . . . . . . 7 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) โˆˆ โ„)
5857recnd 11246 . . . . . 6 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) โˆˆ โ„‚)
5937, 12rerpdivcld 13051 . . . . . . 7 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) โˆˆ โ„)
6059recnd 11246 . . . . . 6 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) โˆˆ โ„‚)
6129, 13remulcld 11248 . . . . . . 7 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (2 ยท (logโ€˜๐‘ฅ)) โˆˆ โ„)
6261recnd 11246 . . . . . 6 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (2 ยท (logโ€˜๐‘ฅ)) โˆˆ โ„‚)
6358, 60, 62addsubd 11596 . . . . 5 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) + ((((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ)) โˆ’ (2 ยท (logโ€˜๐‘ฅ))) = ((((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ))) + ((((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ)))
6456, 63eqtrd 2772 . . . 4 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ))) = ((((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ))) + ((((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ)))
6564mpteq2dva 5248 . . 3 (โŠค โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ)))) = (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ))) + ((((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ))))
6657, 61resubcld 11646 . . . 4 ((โŠค โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ))) โˆˆ โ„)
6712ex 413 . . . . . 6 (โŠค โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†’ ๐‘ฅ โˆˆ โ„+))
6867ssrdv 3988 . . . . 5 (โŠค โ†’ (1(,)+โˆž) โŠ† โ„+)
69 selberg2 27278 . . . . . 6 (๐‘ฅ โˆˆ โ„+ โ†ฆ (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ)))) โˆˆ ๐‘‚(1)
7069a1i 11 . . . . 5 (โŠค โ†’ (๐‘ฅ โˆˆ โ„+ โ†ฆ (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ)))) โˆˆ ๐‘‚(1))
7168, 70o1res2 15511 . . . 4 (โŠค โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ)))) โˆˆ ๐‘‚(1))
72 selberg3lem2 27285 . . . . 5 (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ)) โˆˆ ๐‘‚(1)
7372a1i 11 . . . 4 (โŠค โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ)) โˆˆ ๐‘‚(1))
7466, 59, 71, 73o1add2 15572 . . 3 (โŠค โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ))) + ((((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›))) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›)))) / ๐‘ฅ))) โˆˆ ๐‘‚(1))
7565, 74eqeltrd 2833 . 2 (โŠค โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ)))) โˆˆ ๐‘‚(1))
7675mptru 1548 1 (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (((((ฯˆโ€˜๐‘ฅ) ยท (logโ€˜๐‘ฅ)) + ((2 / (logโ€˜๐‘ฅ)) ยท ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) ยท (ฯˆโ€˜(๐‘ฅ / ๐‘›))) ยท (logโ€˜๐‘›)))) / ๐‘ฅ) โˆ’ (2 ยท (logโ€˜๐‘ฅ)))) โˆˆ ๐‘‚(1)
Colors of variables: wff setvar class
Syntax hints:   โˆง wa 396  โŠคwtru 1542   โˆˆ wcel 2106   class class class wbr 5148   โ†ฆ cmpt 5231  โ€˜cfv 6543  (class class class)co 7411  โ„cr 11111  1c1 11113   + caddc 11115   ยท cmul 11117  +โˆžcpnf 11249   < clt 11252   โˆ’ cmin 11448   / cdiv 11875  โ„•cn 12216  2c2 12271  โ„+crp 12978  (,)cioo 13328  ...cfz 13488  โŒŠcfl 13759  ๐‘‚(1)co1 15434  ฮฃcsu 15636  logclog 26287  ฮ›cvma 26820  ฯˆcchp 26821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-xnn0 12549  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ioc 13333  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-fac 14238  df-bc 14267  df-hash 14295  df-shft 15018  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-limsup 15419  df-clim 15436  df-rlim 15437  df-o1 15438  df-lo1 15439  df-sum 15637  df-ef 16015  df-e 16016  df-sin 16017  df-cos 16018  df-tan 16019  df-pi 16020  df-dvds 16202  df-gcd 16440  df-prm 16613  df-pc 16774  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18987  df-cntz 19222  df-cmn 19691  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-fbas 21141  df-fg 21142  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-lp 22860  df-perf 22861  df-cn 22951  df-cnp 22952  df-haus 23039  df-cmp 23111  df-tx 23286  df-hmeo 23479  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664  df-xms 24046  df-ms 24047  df-tms 24048  df-cncf 24618  df-limc 25607  df-dv 25608  df-ulm 26113  df-log 26289  df-cxp 26290  df-atan 26596  df-em 26721  df-cht 26825  df-vma 26826  df-chp 26827  df-ppi 26828  df-mu 26829
This theorem is referenced by:  selberg3r  27296
  Copyright terms: Public domain W3C validator