MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2vmadivsumlem Structured version   Visualization version   GIF version

Theorem 2vmadivsumlem 26888
Description: Lemma for 2vmadivsum 26889. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
2vmadivsum.1 (𝜑𝐴 ∈ ℝ+)
2vmadivsum.2 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘(Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) − (log‘𝑦))) ≤ 𝐴)
Assertion
Ref Expression
2vmadivsumlem (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1))
Distinct variable groups:   𝑖,𝑚,𝑛,𝑥,𝑦,𝐴   𝜑,𝑚,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑖)

Proof of Theorem 2vmadivsumlem
StepHypRef Expression
1 vmalogdivsum2 26886 . . 3 (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1)
21a1i 11 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1))
3 fzfid 13878 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
4 elfznn 13470 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
54adantl 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
6 vmacl 26467 . . . . . . . . . 10 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
75, 6syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
87, 5nndivred 12207 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
9 fzfid 13878 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
10 elfznn 13470 . . . . . . . . . . . 12 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
1110adantl 482 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
12 vmacl 26467 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
1311, 12syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (Λ‘𝑚) ∈ ℝ)
1413, 11nndivred 12207 . . . . . . . . 9 ((((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((Λ‘𝑚) / 𝑚) ∈ ℝ)
159, 14fsumrecl 15619 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) ∈ ℝ)
168, 15remulcld 11185 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) ∈ ℝ)
173, 16fsumrecl 15619 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) ∈ ℝ)
18 elioore 13294 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
1918adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
20 eliooord 13323 . . . . . . . . 9 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
2120adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
2221simpld 495 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
2319, 22rplogcld 25984 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
2417, 23rerpdivcld 12988 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) ∈ ℝ)
25 1rp 12919 . . . . . . . . 9 1 ∈ ℝ+
2625a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
27 1red 11156 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
2827, 19, 22ltled 11303 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
2919, 26, 28rpgecld 12996 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
3029relogcld 25978 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
3130rehalfcld 12400 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / 2) ∈ ℝ)
3224, 31resubcld 11583 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2)) ∈ ℝ)
3332recnd 11183 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2)) ∈ ℂ)
3429adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
355nnrpd 12955 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
3634, 35rpdivcld 12974 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
3736relogcld 25978 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
388, 37remulcld 11185 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℝ)
393, 38fsumrecl 15619 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℝ)
4039, 23rerpdivcld 12988 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) ∈ ℝ)
4140, 31resubcld 11583 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2)) ∈ ℝ)
4241recnd 11183 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2)) ∈ ℂ)
4317recnd 11183 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) ∈ ℂ)
4439recnd 11183 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
4530recnd 11183 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
4623rpne0d 12962 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
4743, 44, 45, 46divsubdird 11970 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥))))
488recnd 11183 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
4915recnd 11183 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) ∈ ℂ)
5037recnd 11183 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ)
5148, 49, 50subdid 11611 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) = ((((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
5251sumeq2dv 15588 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
5316recnd 11183 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) ∈ ℂ)
5438recnd 11183 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
553, 53, 54fsumsub 15673 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) − (((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
5652, 55eqtrd 2776 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
5756oveq1d 7372 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) / (log‘𝑥)))
5824recnd 11183 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) ∈ ℂ)
5940recnd 11183 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) ∈ ℂ)
6031recnd 11183 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / 2) ∈ ℂ)
6158, 59, 60nnncan2d 11547 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥))))
6247, 57, 613eqtr4d 2786 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))))
6362mpteq2dva 5205 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) = (𝑥 ∈ (1(,)+∞) ↦ (((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2)))))
64 1red 11156 . . . . 5 (𝜑 → 1 ∈ ℝ)
653, 8fsumrecl 15619 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℝ)
6665, 23rerpdivcld 12988 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) ∈ ℝ)
67 2vmadivsum.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
6867rpred 12957 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
6968adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ)
70 ioossre 13325 . . . . . . . 8 (1(,)+∞) ⊆ ℝ
71 1cnd 11150 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
72 o1const 15502 . . . . . . . 8 (((1(,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
7370, 71, 72sylancr 587 . . . . . . 7 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1))
7466recnd 11183 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) ∈ ℂ)
75 1cnd 11150 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℂ)
7665recnd 11183 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) ∈ ℂ)
7776, 45, 45, 46divsubdird 11970 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − ((log‘𝑥) / (log‘𝑥))))
7876, 45subcld 11512 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℂ)
7978, 45, 46divrecd 11934 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥))))
8045, 46dividd 11929 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → ((log‘𝑥) / (log‘𝑥)) = 1)
8180oveq2d 7373 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − ((log‘𝑥) / (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1))
8277, 79, 813eqtr3d 2784 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1))
8382mpteq2dva 5205 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥)))) = (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1)))
8465, 30resubcld 11583 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) ∈ ℝ)
8527, 23rerpdivcld 12988 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 / (log‘𝑥)) ∈ ℝ)
8629ex 413 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ+))
8786ssrdv 3950 . . . . . . . . . . 11 (𝜑 → (1(,)+∞) ⊆ ℝ+)
88 vmadivsum 26830 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1)
8988a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
9087, 89o1res2 15445 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥))) ∈ 𝑂(1))
91 divlogrlim 25990 . . . . . . . . . . 11 (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0
92 rlimo1 15499 . . . . . . . . . . 11 ((𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ⇝𝑟 0 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
9391, 92mp1i 13 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (1 / (log‘𝑥))) ∈ 𝑂(1))
9484, 85, 90, 93o1mul2 15507 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) − (log‘𝑥)) · (1 / (log‘𝑥)))) ∈ 𝑂(1))
9583, 94eqeltrrd 2839 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) − 1)) ∈ 𝑂(1))
9674, 75, 95o1dif 15512 . . . . . . 7 (𝜑 → ((𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ 1) ∈ 𝑂(1)))
9773, 96mpbird 256 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥))) ∈ 𝑂(1))
9868recnd 11183 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
99 o1const 15502 . . . . . . 7 (((1(,)+∞) ⊆ ℝ ∧ 𝐴 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1))
10070, 98, 99sylancr 587 . . . . . 6 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1))
10166, 69, 97, 100o1mul2 15507 . . . . 5 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) · 𝐴)) ∈ 𝑂(1))
10266, 69remulcld 11185 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) · 𝐴) ∈ ℝ)
10315, 37resubcld 11583 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))) ∈ ℝ)
1048, 103remulcld 11185 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℝ)
1053, 104fsumrecl 15619 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℝ)
106105recnd 11183 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℂ)
107106, 45, 46divcld 11931 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥)) ∈ ℂ)
108106abscld 15321 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ ℝ)
10965, 69remulcld 11185 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) ∈ ℝ)
110104recnd 11183 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℂ)
111110abscld 15321 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ ℝ)
1123, 111fsumrecl 15619 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) ∈ ℝ)
1133, 110fsumabs 15686 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))))
11469adantr 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℝ)
1158, 114remulcld 11185 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · 𝐴) ∈ ℝ)
116103recnd 11183 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))) ∈ ℂ)
11748, 116absmuld 15339 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) = ((abs‘((Λ‘𝑛) / 𝑛)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))))
118 vmage0 26470 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
1195, 118syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
1207, 35, 119divge0d 12997 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) / 𝑛))
1218, 120absidd 15307 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Λ‘𝑛) / 𝑛)) = ((Λ‘𝑛) / 𝑛))
122121oveq1d 7372 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((Λ‘𝑛) / 𝑛)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) = (((Λ‘𝑛) / 𝑛) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))))
123117, 122eqtrd 2776 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) = (((Λ‘𝑛) / 𝑛) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))))
124116abscld 15321 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) ∈ ℝ)
125 fveq2 6842 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑚 → (Λ‘𝑖) = (Λ‘𝑚))
126 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑚𝑖 = 𝑚)
127125, 126oveq12d 7375 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑚 → ((Λ‘𝑖) / 𝑖) = ((Λ‘𝑚) / 𝑚))
128127cbvsumv 15581 . . . . . . . . . . . . . . . . . 18 Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) = Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) / 𝑚)
129 fveq2 6842 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑥 / 𝑛) → (⌊‘𝑦) = (⌊‘(𝑥 / 𝑛)))
130129oveq2d 7373 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑥 / 𝑛) → (1...(⌊‘𝑦)) = (1...(⌊‘(𝑥 / 𝑛))))
131130sumeq1d 15586 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑥 / 𝑛) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚))
132128, 131eqtrid 2788 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚))
133 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑥 / 𝑛) → (log‘𝑦) = (log‘(𝑥 / 𝑛)))
134132, 133oveq12d 7375 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 / 𝑛) → (Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) − (log‘𝑦)) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))
135134fveq2d 6846 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 / 𝑛) → (abs‘(Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) − (log‘𝑦))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))))
136135breq1d 5115 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 / 𝑛) → ((abs‘(Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) − (log‘𝑦))) ≤ 𝐴 ↔ (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) ≤ 𝐴))
137 2vmadivsum.2 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘(Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) − (log‘𝑦))) ≤ 𝐴)
138137ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘(Σ𝑖 ∈ (1...(⌊‘𝑦))((Λ‘𝑖) / 𝑖) − (log‘𝑦))) ≤ 𝐴)
13936rpred 12957 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
1405nncnd 12169 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
141140mulid2d 11173 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) = 𝑛)
142 fznnfl 13767 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
14319, 142syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
144143simplbda 500 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛𝑥)
145141, 144eqbrtrd 5127 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) ≤ 𝑥)
146 1red 11156 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
14719adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
148146, 147, 35lemuldivd 13006 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛)))
149145, 148mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑛))
150 1re 11155 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
151 elicopnf 13362 . . . . . . . . . . . . . . . 16 (1 ∈ ℝ → ((𝑥 / 𝑛) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑛) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑛))))
152150, 151ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑥 / 𝑛) ∈ (1[,)+∞) ↔ ((𝑥 / 𝑛) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑛)))
153139, 149, 152sylanbrc 583 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ (1[,)+∞))
154136, 138, 153rspcdva 3582 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) ≤ 𝐴)
155124, 114, 8, 120, 154lemul2ad 12095 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) / 𝑛) · (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) ≤ (((Λ‘𝑛) / 𝑛) · 𝐴))
156123, 155eqbrtrd 5127 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) ≤ (((Λ‘𝑛) / 𝑛) · 𝐴))
1573, 111, 115, 156fsumle 15684 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝐴))
15898adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℂ)
1593, 158, 48fsummulc1 15670 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · 𝐴))
160157, 159breqtrrd 5133 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴))
161108, 112, 109, 113, 160letrd 11312 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴))
162108, 109, 23, 161lediv1dd 13015 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) / (log‘𝑥)) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) / (log‘𝑥)))
163106, 45, 46absdivd 15340 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) / (abs‘(log‘𝑥))))
16423rpge0d 12961 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (log‘𝑥))
16530, 164absidd 15307 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(log‘𝑥)) = (log‘𝑥))
166165oveq2d 7373 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) / (abs‘(log‘𝑥))) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) / (log‘𝑥)))
167163, 166eqtrd 2776 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛))))) / (log‘𝑥)))
1683, 8, 120fsumge0 15680 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛))
16965, 23, 168divge0d 12997 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)))
17067adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+)
171170rpge0d 12961 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝐴)
17266, 69, 169, 171mulge0d 11732 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) · 𝐴))
173102, 172absidd 15307 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) · 𝐴)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) · 𝐴))
17476, 158, 45, 46div23d 11968 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) / (log‘𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) · 𝐴))
175173, 174eqtr4d 2779 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) · 𝐴)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) · 𝐴) / (log‘𝑥)))
176162, 167, 1753brtr4d 5137 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) · 𝐴)))
177176adantrr 715 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) / 𝑛) / (log‘𝑥)) · 𝐴)))
17864, 101, 102, 107, 177o1le 15537 . . . 4 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚) − (log‘(𝑥 / 𝑛)))) / (log‘𝑥))) ∈ 𝑂(1))
17963, 178eqeltrrd 2839 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2)) − ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2)))) ∈ 𝑂(1))
18033, 42, 179o1dif 15512 . 2 (𝜑 → ((𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1) ↔ (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1)))
1812, 180mpbird 256 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((Λ‘𝑚) / 𝑚)) / (log‘𝑥)) − ((log‘𝑥) / 2))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wss 3910   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  +∞cpnf 11186   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  +crp 12915  (,)cioo 13264  [,)cico 13266  ...cfz 13424  cfl 13695  abscabs 15119  𝑟 crli 15367  𝑂(1)co1 15368  Σcsu 15570  logclog 25910  Λcvma 26441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-o1 15372  df-lo1 15373  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736  df-log 25912  df-cxp 25913  df-atan 26217  df-em 26342  df-cht 26446  df-vma 26447  df-chp 26448  df-ppi 26449
This theorem is referenced by:  2vmadivsum  26889
  Copyright terms: Public domain W3C validator