MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2vmadivsumlem Structured version   Visualization version   GIF version

Theorem 2vmadivsumlem 27389
Description: Lemma for 2vmadivsum 27390. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
2vmadivsum.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„+)
2vmadivsum.2 (๐œ‘ โ†’ โˆ€๐‘ฆ โˆˆ (1[,)+โˆž)(absโ€˜(ฮฃ๐‘– โˆˆ (1...(โŒŠโ€˜๐‘ฆ))((ฮ›โ€˜๐‘–) / ๐‘–) โˆ’ (logโ€˜๐‘ฆ))) โ‰ค ๐ด)
Assertion
Ref Expression
2vmadivsumlem (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2))) โˆˆ ๐‘‚(1))
Distinct variable groups:   ๐‘–,๐‘š,๐‘›,๐‘ฅ,๐‘ฆ,๐ด   ๐œ‘,๐‘š,๐‘›,๐‘ฅ
Allowed substitution hints:   ๐œ‘(๐‘ฆ,๐‘–)

Proof of Theorem 2vmadivsumlem
StepHypRef Expression
1 vmalogdivsum2 27387 . . 3 (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2))) โˆˆ ๐‘‚(1)
21a1i 11 . 2 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2))) โˆˆ ๐‘‚(1))
3 fzfid 13935 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (1...(โŒŠโ€˜๐‘ฅ)) โˆˆ Fin)
4 elfznn 13527 . . . . . . . . . . 11 (๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ)) โ†’ ๐‘› โˆˆ โ„•)
54adantl 481 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ๐‘› โˆˆ โ„•)
6 vmacl 26966 . . . . . . . . . 10 (๐‘› โˆˆ โ„• โ†’ (ฮ›โ€˜๐‘›) โˆˆ โ„)
75, 6syl 17 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (ฮ›โ€˜๐‘›) โˆˆ โ„)
87, 5nndivred 12263 . . . . . . . 8 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ((ฮ›โ€˜๐‘›) / ๐‘›) โˆˆ โ„)
9 fzfid 13935 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›))) โˆˆ Fin)
10 elfznn 13527 . . . . . . . . . . . 12 (๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›))) โ†’ ๐‘š โˆˆ โ„•)
1110adantl 481 . . . . . . . . . . 11 ((((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โˆง ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))) โ†’ ๐‘š โˆˆ โ„•)
12 vmacl 26966 . . . . . . . . . . 11 (๐‘š โˆˆ โ„• โ†’ (ฮ›โ€˜๐‘š) โˆˆ โ„)
1311, 12syl 17 . . . . . . . . . 10 ((((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โˆง ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))) โ†’ (ฮ›โ€˜๐‘š) โˆˆ โ„)
1413, 11nndivred 12263 . . . . . . . . 9 ((((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โˆง ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))) โ†’ ((ฮ›โ€˜๐‘š) / ๐‘š) โˆˆ โ„)
159, 14fsumrecl 15677 . . . . . . . 8 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆˆ โ„)
168, 15remulcld 11241 . . . . . . 7 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) โˆˆ โ„)
173, 16fsumrecl 15677 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) โˆˆ โ„)
18 elioore 13351 . . . . . . . 8 (๐‘ฅ โˆˆ (1(,)+โˆž) โ†’ ๐‘ฅ โˆˆ โ„)
1918adantl 481 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ๐‘ฅ โˆˆ โ„)
20 eliooord 13380 . . . . . . . . 9 (๐‘ฅ โˆˆ (1(,)+โˆž) โ†’ (1 < ๐‘ฅ โˆง ๐‘ฅ < +โˆž))
2120adantl 481 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (1 < ๐‘ฅ โˆง ๐‘ฅ < +โˆž))
2221simpld 494 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 1 < ๐‘ฅ)
2319, 22rplogcld 26479 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (logโ€˜๐‘ฅ) โˆˆ โ„+)
2417, 23rerpdivcld 13044 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) / (logโ€˜๐‘ฅ)) โˆˆ โ„)
25 1rp 12975 . . . . . . . . 9 1 โˆˆ โ„+
2625a1i 11 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 1 โˆˆ โ„+)
27 1red 11212 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 1 โˆˆ โ„)
2827, 19, 22ltled 11359 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 1 โ‰ค ๐‘ฅ)
2919, 26, 28rpgecld 13052 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ๐‘ฅ โˆˆ โ„+)
3029relogcld 26473 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (logโ€˜๐‘ฅ) โˆˆ โ„)
3130rehalfcld 12456 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((logโ€˜๐‘ฅ) / 2) โˆˆ โ„)
3224, 31resubcld 11639 . . . 4 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2)) โˆˆ โ„)
3332recnd 11239 . . 3 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2)) โˆˆ โ„‚)
3429adantr 480 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ๐‘ฅ โˆˆ โ„+)
355nnrpd 13011 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ๐‘› โˆˆ โ„+)
3634, 35rpdivcld 13030 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (๐‘ฅ / ๐‘›) โˆˆ โ„+)
3736relogcld 26473 . . . . . . . 8 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (logโ€˜(๐‘ฅ / ๐‘›)) โˆˆ โ„)
388, 37remulcld 11241 . . . . . . 7 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) โˆˆ โ„)
393, 38fsumrecl 15677 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) โˆˆ โ„)
4039, 23rerpdivcld 13044 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) / (logโ€˜๐‘ฅ)) โˆˆ โ„)
4140, 31resubcld 11639 . . . 4 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2)) โˆˆ โ„)
4241recnd 11239 . . 3 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2)) โˆˆ โ„‚)
4317recnd 11239 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) โˆˆ โ„‚)
4439recnd 11239 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) โˆˆ โ„‚)
4530recnd 11239 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (logโ€˜๐‘ฅ) โˆˆ โ„‚)
4623rpne0d 13018 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (logโ€˜๐‘ฅ) โ‰  0)
4743, 44, 45, 46divsubdird 12026 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›)))) / (logโ€˜๐‘ฅ)) = ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) / (logโ€˜๐‘ฅ)) โˆ’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) / (logโ€˜๐‘ฅ))))
488recnd 11239 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ((ฮ›โ€˜๐‘›) / ๐‘›) โˆˆ โ„‚)
4915recnd 11239 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆˆ โ„‚)
5037recnd 11239 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (logโ€˜(๐‘ฅ / ๐‘›)) โˆˆ โ„‚)
5148, 49, 50subdid 11667 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) = ((((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) โˆ’ (((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›)))))
5251sumeq2dv 15646 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) = ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) โˆ’ (((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›)))))
5316recnd 11239 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) โˆˆ โ„‚)
5438recnd 11239 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) โˆˆ โ„‚)
553, 53, 54fsumsub 15731 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) โˆ’ (((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›)))) = (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›)))))
5652, 55eqtrd 2764 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) = (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›)))))
5756oveq1d 7416 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) / (logโ€˜๐‘ฅ)) = ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) โˆ’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›)))) / (logโ€˜๐‘ฅ)))
5824recnd 11239 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) / (logโ€˜๐‘ฅ)) โˆˆ โ„‚)
5940recnd 11239 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) / (logโ€˜๐‘ฅ)) โˆˆ โ„‚)
6031recnd 11239 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((logโ€˜๐‘ฅ) / 2) โˆˆ โ„‚)
6158, 59, 60nnncan2d 11603 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2)) โˆ’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2))) = ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) / (logโ€˜๐‘ฅ)) โˆ’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) / (logโ€˜๐‘ฅ))))
6247, 57, 613eqtr4d 2774 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) / (logโ€˜๐‘ฅ)) = (((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2)) โˆ’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2))))
6362mpteq2dva 5238 . . . 4 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) / (logโ€˜๐‘ฅ))) = (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2)) โˆ’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2)))))
64 1red 11212 . . . . 5 (๐œ‘ โ†’ 1 โˆˆ โ„)
653, 8fsumrecl 15677 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) โˆˆ โ„)
6665, 23rerpdivcld 13044 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) โˆˆ โ„)
67 2vmadivsum.1 . . . . . . . 8 (๐œ‘ โ†’ ๐ด โˆˆ โ„+)
6867rpred 13013 . . . . . . 7 (๐œ‘ โ†’ ๐ด โˆˆ โ„)
6968adantr 480 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ๐ด โˆˆ โ„)
70 ioossre 13382 . . . . . . . 8 (1(,)+โˆž) โІ โ„
71 1cnd 11206 . . . . . . . 8 (๐œ‘ โ†’ 1 โˆˆ โ„‚)
72 o1const 15561 . . . . . . . 8 (((1(,)+โˆž) โІ โ„ โˆง 1 โˆˆ โ„‚) โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ 1) โˆˆ ๐‘‚(1))
7370, 71, 72sylancr 586 . . . . . . 7 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ 1) โˆˆ ๐‘‚(1))
7466recnd 11239 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) โˆˆ โ„‚)
75 1cnd 11206 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 1 โˆˆ โ„‚)
7665recnd 11239 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) โˆˆ โ„‚)
7776, 45, 45, 46divsubdird 12026 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) โˆ’ (logโ€˜๐‘ฅ)) / (logโ€˜๐‘ฅ)) = ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / (logโ€˜๐‘ฅ))))
7876, 45subcld 11568 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) โˆ’ (logโ€˜๐‘ฅ)) โˆˆ โ„‚)
7978, 45, 46divrecd 11990 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) โˆ’ (logโ€˜๐‘ฅ)) / (logโ€˜๐‘ฅ)) = ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) โˆ’ (logโ€˜๐‘ฅ)) ยท (1 / (logโ€˜๐‘ฅ))))
8045, 46dividd 11985 . . . . . . . . . . . 12 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((logโ€˜๐‘ฅ) / (logโ€˜๐‘ฅ)) = 1)
8180oveq2d 7417 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / (logโ€˜๐‘ฅ))) = ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) โˆ’ 1))
8277, 79, 813eqtr3d 2772 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) โˆ’ (logโ€˜๐‘ฅ)) ยท (1 / (logโ€˜๐‘ฅ))) = ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) โˆ’ 1))
8382mpteq2dva 5238 . . . . . . . . 9 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) โˆ’ (logโ€˜๐‘ฅ)) ยท (1 / (logโ€˜๐‘ฅ)))) = (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) โˆ’ 1)))
8465, 30resubcld 11639 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) โˆ’ (logโ€˜๐‘ฅ)) โˆˆ โ„)
8527, 23rerpdivcld 13044 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (1 / (logโ€˜๐‘ฅ)) โˆˆ โ„)
8629ex 412 . . . . . . . . . . . 12 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†’ ๐‘ฅ โˆˆ โ„+))
8786ssrdv 3980 . . . . . . . . . . 11 (๐œ‘ โ†’ (1(,)+โˆž) โІ โ„+)
88 vmadivsum 27331 . . . . . . . . . . . 12 (๐‘ฅ โˆˆ โ„+ โ†ฆ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) โˆ’ (logโ€˜๐‘ฅ))) โˆˆ ๐‘‚(1)
8988a1i 11 . . . . . . . . . . 11 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„+ โ†ฆ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) โˆ’ (logโ€˜๐‘ฅ))) โˆˆ ๐‘‚(1))
9087, 89o1res2 15504 . . . . . . . . . 10 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) โˆ’ (logโ€˜๐‘ฅ))) โˆˆ ๐‘‚(1))
91 divlogrlim 26485 . . . . . . . . . . 11 (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (1 / (logโ€˜๐‘ฅ))) โ‡๐‘Ÿ 0
92 rlimo1 15558 . . . . . . . . . . 11 ((๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (1 / (logโ€˜๐‘ฅ))) โ‡๐‘Ÿ 0 โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (1 / (logโ€˜๐‘ฅ))) โˆˆ ๐‘‚(1))
9391, 92mp1i 13 . . . . . . . . . 10 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (1 / (logโ€˜๐‘ฅ))) โˆˆ ๐‘‚(1))
9484, 85, 90, 93o1mul2 15566 . . . . . . . . 9 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) โˆ’ (logโ€˜๐‘ฅ)) ยท (1 / (logโ€˜๐‘ฅ)))) โˆˆ ๐‘‚(1))
9583, 94eqeltrrd 2826 . . . . . . . 8 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) โˆ’ 1)) โˆˆ ๐‘‚(1))
9674, 75, 95o1dif 15571 . . . . . . 7 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ))) โˆˆ ๐‘‚(1) โ†” (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ 1) โˆˆ ๐‘‚(1)))
9773, 96mpbird 257 . . . . . 6 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ))) โˆˆ ๐‘‚(1))
9868recnd 11239 . . . . . . 7 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
99 o1const 15561 . . . . . . 7 (((1(,)+โˆž) โІ โ„ โˆง ๐ด โˆˆ โ„‚) โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ๐ด) โˆˆ ๐‘‚(1))
10070, 98, 99sylancr 586 . . . . . 6 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ๐ด) โˆˆ ๐‘‚(1))
10166, 69, 97, 100o1mul2 15566 . . . . 5 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) ยท ๐ด)) โˆˆ ๐‘‚(1))
10266, 69remulcld 11241 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) ยท ๐ด) โˆˆ โ„)
10315, 37resubcld 11639 . . . . . . . . 9 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))) โˆˆ โ„)
1048, 103remulcld 11241 . . . . . . . 8 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) โˆˆ โ„)
1053, 104fsumrecl 15677 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) โˆˆ โ„)
106105recnd 11239 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) โˆˆ โ„‚)
107106, 45, 46divcld 11987 . . . . 5 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) / (logโ€˜๐‘ฅ)) โˆˆ โ„‚)
108106abscld 15380 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (absโ€˜ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) โˆˆ โ„)
10965, 69remulcld 11241 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) ยท ๐ด) โˆˆ โ„)
110104recnd 11239 . . . . . . . . . . 11 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) โˆˆ โ„‚)
111110abscld 15380 . . . . . . . . . 10 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (absโ€˜(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) โˆˆ โ„)
1123, 111fsumrecl 15677 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(absโ€˜(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) โˆˆ โ„)
1133, 110fsumabs 15744 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (absโ€˜ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) โ‰ค ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(absโ€˜(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))))
11469adantr 480 . . . . . . . . . . . 12 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ๐ด โˆˆ โ„)
1158, 114remulcld 11241 . . . . . . . . . . 11 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (((ฮ›โ€˜๐‘›) / ๐‘›) ยท ๐ด) โˆˆ โ„)
116103recnd 11239 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))) โˆˆ โ„‚)
11748, 116absmuld 15398 . . . . . . . . . . . . 13 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (absโ€˜(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) = ((absโ€˜((ฮ›โ€˜๐‘›) / ๐‘›)) ยท (absโ€˜(ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))))
118 vmage0 26969 . . . . . . . . . . . . . . . . 17 (๐‘› โˆˆ โ„• โ†’ 0 โ‰ค (ฮ›โ€˜๐‘›))
1195, 118syl 17 . . . . . . . . . . . . . . . 16 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ 0 โ‰ค (ฮ›โ€˜๐‘›))
1207, 35, 119divge0d 13053 . . . . . . . . . . . . . . 15 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ 0 โ‰ค ((ฮ›โ€˜๐‘›) / ๐‘›))
1218, 120absidd 15366 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (absโ€˜((ฮ›โ€˜๐‘›) / ๐‘›)) = ((ฮ›โ€˜๐‘›) / ๐‘›))
122121oveq1d 7416 . . . . . . . . . . . . 13 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ((absโ€˜((ฮ›โ€˜๐‘›) / ๐‘›)) ยท (absโ€˜(ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) = (((ฮ›โ€˜๐‘›) / ๐‘›) ยท (absโ€˜(ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))))
123117, 122eqtrd 2764 . . . . . . . . . . . 12 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (absโ€˜(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) = (((ฮ›โ€˜๐‘›) / ๐‘›) ยท (absโ€˜(ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))))
124116abscld 15380 . . . . . . . . . . . . 13 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (absโ€˜(ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) โˆˆ โ„)
125 fveq2 6881 . . . . . . . . . . . . . . . . . . . 20 (๐‘– = ๐‘š โ†’ (ฮ›โ€˜๐‘–) = (ฮ›โ€˜๐‘š))
126 id 22 . . . . . . . . . . . . . . . . . . . 20 (๐‘– = ๐‘š โ†’ ๐‘– = ๐‘š)
127125, 126oveq12d 7419 . . . . . . . . . . . . . . . . . . 19 (๐‘– = ๐‘š โ†’ ((ฮ›โ€˜๐‘–) / ๐‘–) = ((ฮ›โ€˜๐‘š) / ๐‘š))
128127cbvsumv 15639 . . . . . . . . . . . . . . . . . 18 ฮฃ๐‘– โˆˆ (1...(โŒŠโ€˜๐‘ฆ))((ฮ›โ€˜๐‘–) / ๐‘–) = ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜๐‘ฆ))((ฮ›โ€˜๐‘š) / ๐‘š)
129 fveq2 6881 . . . . . . . . . . . . . . . . . . . 20 (๐‘ฆ = (๐‘ฅ / ๐‘›) โ†’ (โŒŠโ€˜๐‘ฆ) = (โŒŠโ€˜(๐‘ฅ / ๐‘›)))
130129oveq2d 7417 . . . . . . . . . . . . . . . . . . 19 (๐‘ฆ = (๐‘ฅ / ๐‘›) โ†’ (1...(โŒŠโ€˜๐‘ฆ)) = (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›))))
131130sumeq1d 15644 . . . . . . . . . . . . . . . . . 18 (๐‘ฆ = (๐‘ฅ / ๐‘›) โ†’ ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜๐‘ฆ))((ฮ›โ€˜๐‘š) / ๐‘š) = ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š))
132128, 131eqtrid 2776 . . . . . . . . . . . . . . . . 17 (๐‘ฆ = (๐‘ฅ / ๐‘›) โ†’ ฮฃ๐‘– โˆˆ (1...(โŒŠโ€˜๐‘ฆ))((ฮ›โ€˜๐‘–) / ๐‘–) = ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š))
133 fveq2 6881 . . . . . . . . . . . . . . . . 17 (๐‘ฆ = (๐‘ฅ / ๐‘›) โ†’ (logโ€˜๐‘ฆ) = (logโ€˜(๐‘ฅ / ๐‘›)))
134132, 133oveq12d 7419 . . . . . . . . . . . . . . . 16 (๐‘ฆ = (๐‘ฅ / ๐‘›) โ†’ (ฮฃ๐‘– โˆˆ (1...(โŒŠโ€˜๐‘ฆ))((ฮ›โ€˜๐‘–) / ๐‘–) โˆ’ (logโ€˜๐‘ฆ)) = (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))
135134fveq2d 6885 . . . . . . . . . . . . . . 15 (๐‘ฆ = (๐‘ฅ / ๐‘›) โ†’ (absโ€˜(ฮฃ๐‘– โˆˆ (1...(โŒŠโ€˜๐‘ฆ))((ฮ›โ€˜๐‘–) / ๐‘–) โˆ’ (logโ€˜๐‘ฆ))) = (absโ€˜(ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))))
136135breq1d 5148 . . . . . . . . . . . . . 14 (๐‘ฆ = (๐‘ฅ / ๐‘›) โ†’ ((absโ€˜(ฮฃ๐‘– โˆˆ (1...(โŒŠโ€˜๐‘ฆ))((ฮ›โ€˜๐‘–) / ๐‘–) โˆ’ (logโ€˜๐‘ฆ))) โ‰ค ๐ด โ†” (absโ€˜(ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) โ‰ค ๐ด))
137 2vmadivsum.2 . . . . . . . . . . . . . . 15 (๐œ‘ โ†’ โˆ€๐‘ฆ โˆˆ (1[,)+โˆž)(absโ€˜(ฮฃ๐‘– โˆˆ (1...(โŒŠโ€˜๐‘ฆ))((ฮ›โ€˜๐‘–) / ๐‘–) โˆ’ (logโ€˜๐‘ฆ))) โ‰ค ๐ด)
138137ad2antrr 723 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ โˆ€๐‘ฆ โˆˆ (1[,)+โˆž)(absโ€˜(ฮฃ๐‘– โˆˆ (1...(โŒŠโ€˜๐‘ฆ))((ฮ›โ€˜๐‘–) / ๐‘–) โˆ’ (logโ€˜๐‘ฆ))) โ‰ค ๐ด)
13936rpred 13013 . . . . . . . . . . . . . . 15 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (๐‘ฅ / ๐‘›) โˆˆ โ„)
1405nncnd 12225 . . . . . . . . . . . . . . . . . 18 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ๐‘› โˆˆ โ„‚)
141140mullidd 11229 . . . . . . . . . . . . . . . . 17 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (1 ยท ๐‘›) = ๐‘›)
142 fznnfl 13824 . . . . . . . . . . . . . . . . . . 19 (๐‘ฅ โˆˆ โ„ โ†’ (๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ)) โ†” (๐‘› โˆˆ โ„• โˆง ๐‘› โ‰ค ๐‘ฅ)))
14319, 142syl 17 . . . . . . . . . . . . . . . . . 18 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ)) โ†” (๐‘› โˆˆ โ„• โˆง ๐‘› โ‰ค ๐‘ฅ)))
144143simplbda 499 . . . . . . . . . . . . . . . . 17 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ๐‘› โ‰ค ๐‘ฅ)
145141, 144eqbrtrd 5160 . . . . . . . . . . . . . . . 16 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (1 ยท ๐‘›) โ‰ค ๐‘ฅ)
146 1red 11212 . . . . . . . . . . . . . . . . 17 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ 1 โˆˆ โ„)
14719adantr 480 . . . . . . . . . . . . . . . . 17 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ๐‘ฅ โˆˆ โ„)
148146, 147, 35lemuldivd 13062 . . . . . . . . . . . . . . . 16 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ ((1 ยท ๐‘›) โ‰ค ๐‘ฅ โ†” 1 โ‰ค (๐‘ฅ / ๐‘›)))
149145, 148mpbid 231 . . . . . . . . . . . . . . 15 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ 1 โ‰ค (๐‘ฅ / ๐‘›))
150 1re 11211 . . . . . . . . . . . . . . . 16 1 โˆˆ โ„
151 elicopnf 13419 . . . . . . . . . . . . . . . 16 (1 โˆˆ โ„ โ†’ ((๐‘ฅ / ๐‘›) โˆˆ (1[,)+โˆž) โ†” ((๐‘ฅ / ๐‘›) โˆˆ โ„ โˆง 1 โ‰ค (๐‘ฅ / ๐‘›))))
152150, 151ax-mp 5 . . . . . . . . . . . . . . 15 ((๐‘ฅ / ๐‘›) โˆˆ (1[,)+โˆž) โ†” ((๐‘ฅ / ๐‘›) โˆˆ โ„ โˆง 1 โ‰ค (๐‘ฅ / ๐‘›)))
153139, 149, 152sylanbrc 582 . . . . . . . . . . . . . 14 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (๐‘ฅ / ๐‘›) โˆˆ (1[,)+โˆž))
154136, 138, 153rspcdva 3605 . . . . . . . . . . . . 13 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (absโ€˜(ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) โ‰ค ๐ด)
155124, 114, 8, 120, 154lemul2ad 12151 . . . . . . . . . . . 12 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (((ฮ›โ€˜๐‘›) / ๐‘›) ยท (absโ€˜(ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) โ‰ค (((ฮ›โ€˜๐‘›) / ๐‘›) ยท ๐ด))
156123, 155eqbrtrd 5160 . . . . . . . . . . 11 (((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โˆง ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))) โ†’ (absโ€˜(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) โ‰ค (((ฮ›โ€˜๐‘›) / ๐‘›) ยท ๐ด))
1573, 111, 115, 156fsumle 15742 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(absโ€˜(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) โ‰ค ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ๐ด))
15898adantr 480 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ๐ด โˆˆ โ„‚)
1593, 158, 48fsummulc1 15728 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) ยท ๐ด) = ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ๐ด))
160157, 159breqtrrd 5166 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(absโ€˜(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) โ‰ค (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) ยท ๐ด))
161108, 112, 109, 113, 160letrd 11368 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (absโ€˜ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) โ‰ค (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) ยท ๐ด))
162108, 109, 23, 161lediv1dd 13071 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((absโ€˜ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) / (logโ€˜๐‘ฅ)) โ‰ค ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) ยท ๐ด) / (logโ€˜๐‘ฅ)))
163106, 45, 46absdivd 15399 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (absโ€˜(ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) / (logโ€˜๐‘ฅ))) = ((absโ€˜ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) / (absโ€˜(logโ€˜๐‘ฅ))))
16423rpge0d 13017 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 0 โ‰ค (logโ€˜๐‘ฅ))
16530, 164absidd 15366 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (absโ€˜(logโ€˜๐‘ฅ)) = (logโ€˜๐‘ฅ))
166165oveq2d 7417 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((absโ€˜ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) / (absโ€˜(logโ€˜๐‘ฅ))) = ((absโ€˜ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) / (logโ€˜๐‘ฅ)))
167163, 166eqtrd 2764 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (absโ€˜(ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) / (logโ€˜๐‘ฅ))) = ((absโ€˜ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›))))) / (logโ€˜๐‘ฅ)))
1683, 8, 120fsumge0 15738 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 0 โ‰ค ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›))
16965, 23, 168divge0d 13053 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 0 โ‰ค (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)))
17067adantr 480 . . . . . . . . . . 11 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ๐ด โˆˆ โ„+)
171170rpge0d 13017 . . . . . . . . . 10 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 0 โ‰ค ๐ด)
17266, 69, 169, 171mulge0d 11788 . . . . . . . . 9 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ 0 โ‰ค ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) ยท ๐ด))
173102, 172absidd 15366 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (absโ€˜((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) ยท ๐ด)) = ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) ยท ๐ด))
17476, 158, 45, 46div23d 12024 . . . . . . . 8 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) ยท ๐ด) / (logโ€˜๐‘ฅ)) = ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) ยท ๐ด))
175173, 174eqtr4d 2767 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (absโ€˜((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) ยท ๐ด)) = ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) ยท ๐ด) / (logโ€˜๐‘ฅ)))
176162, 167, 1753brtr4d 5170 . . . . . 6 ((๐œ‘ โˆง ๐‘ฅ โˆˆ (1(,)+โˆž)) โ†’ (absโ€˜(ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) / (logโ€˜๐‘ฅ))) โ‰ค (absโ€˜((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) ยท ๐ด)))
177176adantrr 714 . . . . 5 ((๐œ‘ โˆง (๐‘ฅ โˆˆ (1(,)+โˆž) โˆง 1 โ‰ค ๐‘ฅ)) โ†’ (absโ€˜(ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) / (logโ€˜๐‘ฅ))) โ‰ค (absโ€˜((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))((ฮ›โ€˜๐‘›) / ๐‘›) / (logโ€˜๐‘ฅ)) ยท ๐ด)))
17864, 101, 102, 107, 177o1le 15596 . . . 4 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š) โˆ’ (logโ€˜(๐‘ฅ / ๐‘›)))) / (logโ€˜๐‘ฅ))) โˆˆ ๐‘‚(1))
17963, 178eqeltrrd 2826 . . 3 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ (((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2)) โˆ’ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2)))) โˆˆ ๐‘‚(1))
18033, 42, 179o1dif 15571 . 2 (๐œ‘ โ†’ ((๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2))) โˆˆ ๐‘‚(1) โ†” (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท (logโ€˜(๐‘ฅ / ๐‘›))) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2))) โˆˆ ๐‘‚(1)))
1812, 180mpbird 257 1 (๐œ‘ โ†’ (๐‘ฅ โˆˆ (1(,)+โˆž) โ†ฆ ((ฮฃ๐‘› โˆˆ (1...(โŒŠโ€˜๐‘ฅ))(((ฮ›โ€˜๐‘›) / ๐‘›) ยท ฮฃ๐‘š โˆˆ (1...(โŒŠโ€˜(๐‘ฅ / ๐‘›)))((ฮ›โ€˜๐‘š) / ๐‘š)) / (logโ€˜๐‘ฅ)) โˆ’ ((logโ€˜๐‘ฅ) / 2))) โˆˆ ๐‘‚(1))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098  โˆ€wral 3053   โІ wss 3940   class class class wbr 5138   โ†ฆ cmpt 5221  โ€˜cfv 6533  (class class class)co 7401  โ„‚cc 11104  โ„cr 11105  0cc0 11106  1c1 11107   ยท cmul 11111  +โˆžcpnf 11242   < clt 11245   โ‰ค cle 11246   โˆ’ cmin 11441   / cdiv 11868  โ„•cn 12209  2c2 12264  โ„+crp 12971  (,)cioo 13321  [,)cico 13323  ...cfz 13481  โŒŠcfl 13752  abscabs 15178   โ‡๐‘Ÿ crli 15426  ๐‘‚(1)co1 15427  ฮฃcsu 15629  logclog 26405  ฮ›cvma 26940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-xnn0 12542  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-fac 14231  df-bc 14260  df-hash 14288  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-o1 15431  df-lo1 15432  df-sum 15630  df-ef 16008  df-e 16009  df-sin 16010  df-cos 16011  df-tan 16012  df-pi 16013  df-dvds 16195  df-gcd 16433  df-prm 16606  df-pc 16769  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-pt 17389  df-prds 17392  df-xrs 17447  df-qtop 17452  df-imas 17453  df-xps 17455  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-mulg 18986  df-cntz 19223  df-cmn 19692  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-fbas 21225  df-fg 21226  df-cnfld 21229  df-top 22718  df-topon 22735  df-topsp 22757  df-bases 22771  df-cld 22845  df-ntr 22846  df-cls 22847  df-nei 22924  df-lp 22962  df-perf 22963  df-cn 23053  df-cnp 23054  df-haus 23141  df-cmp 23213  df-tx 23388  df-hmeo 23581  df-fil 23672  df-fm 23764  df-flim 23765  df-flf 23766  df-xms 24148  df-ms 24149  df-tms 24150  df-cncf 24720  df-limc 25717  df-dv 25718  df-ulm 26230  df-log 26407  df-cxp 26408  df-atan 26715  df-em 26841  df-cht 26945  df-vma 26946  df-chp 26947  df-ppi 26948
This theorem is referenced by:  2vmadivsum  27390
  Copyright terms: Public domain W3C validator