| Step | Hyp | Ref
| Expression |
| 1 | | 2re 12340 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 2 | 1 | a1i 11 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 2 ∈ ℝ) |
| 3 | | elioore 13417 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ) |
| 4 | 3 | adantl 481 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ∈ ℝ) |
| 5 | | 1rp 13038 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
| 6 | 5 | a1i 11 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 ∈ ℝ+) |
| 7 | | 1red 11262 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 ∈ ℝ) |
| 8 | | eliooord 13446 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (1(,)+∞) → (1
< 𝑥 ∧ 𝑥 <
+∞)) |
| 9 | 8 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) |
| 10 | 9 | simpld 494 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 < 𝑥) |
| 11 | 7, 4, 10 | ltled 11409 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 ≤ 𝑥) |
| 12 | 4, 6, 11 | rpgecld 13116 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ∈ ℝ+) |
| 13 | | pntrval.r |
. . . . . . . . . . . . 13
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
| 14 | 13 | pntrf 27607 |
. . . . . . . . . . . 12
⊢ 𝑅:ℝ+⟶ℝ |
| 15 | 14 | ffvelcdmi 7103 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) ∈
ℝ) |
| 16 | 12, 15 | syl 17 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (𝑅‘𝑥) ∈ ℝ) |
| 17 | 12 | relogcld 26665 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ) |
| 18 | 16, 17 | remulcld 11291 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((𝑅‘𝑥) · (log‘𝑥)) ∈ ℝ) |
| 19 | 2, 18 | remulcld 11291 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 · ((𝑅‘𝑥) · (log‘𝑥))) ∈ ℝ) |
| 20 | 19 | recnd 11289 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 · ((𝑅‘𝑥) · (log‘𝑥))) ∈ ℂ) |
| 21 | 4, 10 | rplogcld 26671 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ∈
ℝ+) |
| 22 | 2, 21 | rerpdivcld 13108 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ) |
| 23 | 22 | recnd 11289 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ) |
| 24 | | fzfid 14014 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin) |
| 25 | 12 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+) |
| 26 | | elfznn 13593 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
| 27 | 26 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ) |
| 28 | 27 | nnrpd 13075 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+) |
| 29 | 25, 28 | rpdivcld 13094 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈
ℝ+) |
| 30 | 14 | ffvelcdmi 7103 |
. . . . . . . . . . . 12
⊢ ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
| 31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
| 32 | | fzfid 14014 |
. . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...𝑛) ∈ Fin) |
| 33 | | dvdsssfz1 16355 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ⊆ (1...𝑛)) |
| 34 | 27, 33 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ⊆ (1...𝑛)) |
| 35 | 32, 34 | ssfid 9301 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ∈ Fin) |
| 36 | | ssrab2 4080 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ⊆ ℕ |
| 37 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) |
| 38 | 36, 37 | sselid 3981 |
. . . . . . . . . . . . . . 15
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → 𝑚 ∈ ℕ) |
| 39 | | vmacl 27161 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ →
(Λ‘𝑚) ∈
ℝ) |
| 40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (Λ‘𝑚) ∈ ℝ) |
| 41 | | dvdsdivcl 16353 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) |
| 42 | 27, 41 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) |
| 43 | 36, 42 | sselid 3981 |
. . . . . . . . . . . . . . 15
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (𝑛 / 𝑚) ∈ ℕ) |
| 44 | | vmacl 27161 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 / 𝑚) ∈ ℕ →
(Λ‘(𝑛 / 𝑚)) ∈
ℝ) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (Λ‘(𝑛 / 𝑚)) ∈ ℝ) |
| 46 | 40, 45 | remulcld 11291 |
. . . . . . . . . . . . 13
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ) |
| 47 | 35, 46 | fsumrecl 15770 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ) |
| 48 | | vmacl 27161 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
| 49 | 27, 48 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈
ℝ) |
| 50 | 28 | relogcld 26665 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈
ℝ) |
| 51 | 49, 50 | remulcld 11291 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· (log‘𝑛))
∈ ℝ) |
| 52 | 47, 51 | resubcld 11691 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))) ∈
ℝ) |
| 53 | 31, 52 | remulcld 11291 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈
ℝ) |
| 54 | 24, 53 | fsumrecl 15770 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈
ℝ) |
| 55 | 54 | recnd 11289 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈
ℂ) |
| 56 | 23, 55 | mulcld 11281 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ∈
ℂ) |
| 57 | 20, 56 | subcld 11620 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) ∈
ℂ) |
| 58 | 4 | recnd 11289 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ∈ ℂ) |
| 59 | | 2cnd 12344 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 2 ∈ ℂ) |
| 60 | 12 | rpne0d 13082 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ≠ 0) |
| 61 | | 2ne0 12370 |
. . . . . . 7
⊢ 2 ≠
0 |
| 62 | 61 | a1i 11 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 2 ≠ 0) |
| 63 | 57, 58, 59, 60, 62 | divdiv32d 12068 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) / 2) = ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 2) / 𝑥)) |
| 64 | 57, 58, 60 | divcld 12043 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) ∈ ℂ) |
| 65 | 64, 59, 62 | divrecd 12046 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) / 2) = ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) · (1 / 2))) |
| 66 | 20, 56, 59, 62 | divsubdird 12082 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 2) = (((2 ·
((𝑅‘𝑥) · (log‘𝑥))) / 2) − (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / 2))) |
| 67 | 18 | recnd 11289 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((𝑅‘𝑥) · (log‘𝑥)) ∈ ℂ) |
| 68 | 67, 59, 62 | divcan3d 12048 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) / 2) = ((𝑅‘𝑥) · (log‘𝑥))) |
| 69 | 21 | rpcnd 13079 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ) |
| 70 | 21 | rpne0d 13082 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ≠ 0) |
| 71 | 59, 69, 55, 70 | div32d 12066 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) = (2 ·
(Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) |
| 72 | 71 | oveq1d 7446 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / 2) = ((2 ·
(Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 2)) |
| 73 | 54, 21 | rerpdivcld 13108 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)) ∈
ℝ) |
| 74 | 73 | recnd 11289 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)) ∈
ℂ) |
| 75 | 74, 59, 62 | divcan3d 12048 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 2) = (Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) |
| 76 | 72, 75 | eqtrd 2777 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / 2) = (Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) |
| 77 | 68, 76 | oveq12d 7449 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) / 2) − (((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / 2)) = (((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) |
| 78 | 66, 77 | eqtrd 2777 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 2) = (((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) |
| 79 | 78 | oveq1d 7446 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 2) / 𝑥) = ((((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) |
| 80 | 63, 65, 79 | 3eqtr3d 2785 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) · (1 / 2)) = ((((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) |
| 81 | 80 | mpteq2dva 5242 |
. . 3
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) · (1 / 2))) = (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥))) |
| 82 | 22, 54 | remulcld 11291 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ∈
ℝ) |
| 83 | 19, 82 | resubcld 11691 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) ∈
ℝ) |
| 84 | 83, 12 | rerpdivcld 13108 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) ∈ ℝ) |
| 85 | 7 | rehalfcld 12513 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (1 / 2) ∈ ℝ) |
| 86 | 31 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ) |
| 87 | 47 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ) |
| 88 | 49 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈
ℂ) |
| 89 | 50 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈
ℂ) |
| 90 | 88, 89 | mulcld 11281 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· (log‘𝑛))
∈ ℂ) |
| 91 | 86, 87, 90 | subdid 11719 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) = (((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑛) · (log‘𝑛))))) |
| 92 | 86, 88, 89 | mul12d 11470 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑛) · (log‘𝑛))) = ((Λ‘𝑛) · ((𝑅‘(𝑥 / 𝑛)) · (log‘𝑛)))) |
| 93 | 88, 86, 89 | mulassd 11284 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛)
· (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) = ((Λ‘𝑛) · ((𝑅‘(𝑥 / 𝑛)) · (log‘𝑛)))) |
| 94 | 92, 93 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑛) · (log‘𝑛))) = (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) |
| 95 | 94 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑛) · (log‘𝑛)))) = (((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 96 | 91, 95 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) = (((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 97 | 96 | sumeq2dv 15738 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 98 | 86, 87 | mulcld 11281 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) ∈ ℂ) |
| 99 | 88, 86 | mulcld 11281 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· (𝑅‘(𝑥 / 𝑛))) ∈ ℂ) |
| 100 | 99, 89 | mulcld 11281 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛)
· (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
| 101 | 24, 98, 100 | fsumsub 15824 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 102 | 46 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ) |
| 103 | 35, 86, 102 | fsummulc2 15820 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚))))) |
| 104 | 103 | sumeq2dv 15738 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚))))) |
| 105 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (𝑚 · 𝑘) → (𝑥 / 𝑛) = (𝑥 / (𝑚 · 𝑘))) |
| 106 | 105 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 · 𝑘) → (𝑅‘(𝑥 / 𝑛)) = (𝑅‘(𝑥 / (𝑚 · 𝑘)))) |
| 107 | | fvoveq1 7454 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (𝑚 · 𝑘) → (Λ‘(𝑛 / 𝑚)) = (Λ‘((𝑚 · 𝑘) / 𝑚))) |
| 108 | 107 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 · 𝑘) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) = ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚)))) |
| 109 | 106, 108 | oveq12d 7449 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑚 · 𝑘) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚)))) = ((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚))))) |
| 110 | 31 | adantrr 717 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
| 111 | 40 | anasss 466 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (Λ‘𝑚) ∈ ℝ) |
| 112 | 45 | anasss 466 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (Λ‘(𝑛 / 𝑚)) ∈ ℝ) |
| 113 | 111, 112 | remulcld 11291 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚))) ∈
ℝ) |
| 114 | 110, 113 | remulcld 11291 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚)))) ∈
ℝ) |
| 115 | 114 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚)))) ∈
ℂ) |
| 116 | 109, 4, 115 | dvdsflsumcom 27231 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚)))) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚))))) |
| 117 | 58 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑥 ∈ ℂ) |
| 118 | | elfznn 13593 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑚 ∈
(1...(⌊‘𝑥))
→ 𝑚 ∈
ℕ) |
| 119 | 118 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ) |
| 120 | 119 | nnrpd 13075 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+) |
| 121 | 120 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑚 ∈ ℝ+) |
| 122 | 121 | rpcnd 13079 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑚 ∈ ℂ) |
| 123 | | elfznn 13593 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚))) → 𝑘 ∈
ℕ) |
| 124 | 123 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑘 ∈ ℕ) |
| 125 | 124 | nncnd 12282 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑘 ∈ ℂ) |
| 126 | 121 | rpne0d 13082 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑚 ≠ 0) |
| 127 | 124 | nnne0d 12316 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑘 ≠ 0) |
| 128 | 117, 122,
125, 126, 127 | divdiv1d 12074 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑥 / 𝑚) / 𝑘) = (𝑥 / (𝑚 · 𝑘))) |
| 129 | 128 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑥 / (𝑚 · 𝑘)) = ((𝑥 / 𝑚) / 𝑘)) |
| 130 | 129 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑅‘(𝑥 / (𝑚 · 𝑘))) = (𝑅‘((𝑥 / 𝑚) / 𝑘))) |
| 131 | 125, 122,
126 | divcan3d 12048 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑚 · 𝑘) / 𝑚) = 𝑘) |
| 132 | 131 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘((𝑚 · 𝑘) / 𝑚)) = (Λ‘𝑘)) |
| 133 | 132 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚))) = ((Λ‘𝑚) · (Λ‘𝑘))) |
| 134 | 130, 133 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚)))) = ((𝑅‘((𝑥 / 𝑚) / 𝑘)) · ((Λ‘𝑚) · (Λ‘𝑘)))) |
| 135 | 12 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑥 ∈ ℝ+) |
| 136 | 135, 121 | rpdivcld 13094 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑥 / 𝑚) ∈
ℝ+) |
| 137 | 124 | nnrpd 13075 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑘 ∈ ℝ+) |
| 138 | 136, 137 | rpdivcld 13094 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑥 / 𝑚) / 𝑘) ∈
ℝ+) |
| 139 | 14 | ffvelcdmi 7103 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 / 𝑚) / 𝑘) ∈ ℝ+ → (𝑅‘((𝑥 / 𝑚) / 𝑘)) ∈ ℝ) |
| 140 | 138, 139 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑅‘((𝑥 / 𝑚) / 𝑘)) ∈ ℝ) |
| 141 | 140 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑅‘((𝑥 / 𝑚) / 𝑘)) ∈ ℂ) |
| 142 | 119, 39 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈
ℝ) |
| 143 | 142 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈
ℂ) |
| 144 | 143 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑚) ∈
ℂ) |
| 145 | | vmacl 27161 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ ℕ →
(Λ‘𝑘) ∈
ℝ) |
| 146 | 124, 145 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑘) ∈
ℝ) |
| 147 | 146 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑘) ∈
ℂ) |
| 148 | 144, 147 | mulcld 11281 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((Λ‘𝑚) · (Λ‘𝑘)) ∈
ℂ) |
| 149 | 141, 148 | mulcomd 11282 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑅‘((𝑥 / 𝑚) / 𝑘)) · ((Λ‘𝑚) · (Λ‘𝑘))) = (((Λ‘𝑚) · (Λ‘𝑘)) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) |
| 150 | 144, 147,
141 | mulassd 11284 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (((Λ‘𝑚) · (Λ‘𝑘)) · (𝑅‘((𝑥 / 𝑚) / 𝑘))) = ((Λ‘𝑚) · ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 151 | 134, 149,
150 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚)))) = ((Λ‘𝑚) ·
((Λ‘𝑘)
· (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 152 | 151 | sumeq2dv 15738 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚)))) = Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑚) · ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 153 | | fzfid 14014 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) →
(1...(⌊‘(𝑥 /
𝑚))) ∈
Fin) |
| 154 | 146, 140 | remulcld 11291 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))) ∈ ℝ) |
| 155 | 154 | recnd 11289 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))) ∈ ℂ) |
| 156 | 153, 143,
155 | fsummulc2 15820 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑚)
· Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) = Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑚) · ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 157 | 152, 156 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚)))) = ((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 158 | 157 | sumeq2dv 15738 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚)))) = Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 159 | 104, 116,
158 | 3eqtrd 2781 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 160 | 159 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 161 | 97, 101, 160 | 3eqtrd 2781 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) = (Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 162 | 161 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) = ((2 / (log‘𝑥)) · (Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 163 | 153, 154 | fsumrecl 15770 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))) ∈ ℝ) |
| 164 | 142, 163 | remulcld 11291 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑚)
· Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) ∈ ℝ) |
| 165 | 24, 164 | fsumrecl 15770 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) ∈ ℝ) |
| 166 | 165 | recnd 11289 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) ∈ ℂ) |
| 167 | 49, 31 | remulcld 11291 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· (𝑅‘(𝑥 / 𝑛))) ∈ ℝ) |
| 168 | 167, 50 | remulcld 11291 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛)
· (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
| 169 | 24, 168 | fsumrecl 15770 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
| 170 | 169 | recnd 11289 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
| 171 | 23, 166, 170 | subdid 11719 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 172 | 162, 171 | eqtrd 2777 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) = (((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 173 | 172 | oveq2d 7447 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) = ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − (((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))) |
| 174 | 23, 166 | mulcld 11281 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) ∈ ℂ) |
| 175 | 22, 169 | remulcld 11291 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ) |
| 176 | 175 | recnd 11289 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ) |
| 177 | 20, 174, 176 | subsub3d 11650 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − (((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) = (((2 · ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))) |
| 178 | 173, 177 | eqtrd 2777 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) = (((2 · ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))) |
| 179 | 67 | 2timesd 12509 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 · ((𝑅‘𝑥) · (log‘𝑥))) = (((𝑅‘𝑥) · (log‘𝑥)) + ((𝑅‘𝑥) · (log‘𝑥)))) |
| 180 | 179 | oveq1d 7446 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((((𝑅‘𝑥) · (log‘𝑥)) + ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 181 | 67, 176, 67 | add32d 11489 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((𝑅‘𝑥) · (log‘𝑥))) = ((((𝑅‘𝑥) · (log‘𝑥)) + ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 182 | 180, 181 | eqtr4d 2780 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((𝑅‘𝑥) · (log‘𝑥)))) |
| 183 | 182 | oveq1d 7446 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) = (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))) |
| 184 | 18, 175 | readdcld 11290 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ) |
| 185 | 184 | recnd 11289 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℂ) |
| 186 | 185, 67, 174 | addsubassd 11640 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) = ((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + (((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))))) |
| 187 | 178, 183,
186 | 3eqtrd 2781 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) = ((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + (((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))))) |
| 188 | 187 | oveq1d 7446 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) = (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + (((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))) / 𝑥)) |
| 189 | 67, 174 | subcld 11620 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) ∈ ℂ) |
| 190 | 185, 189,
58, 60 | divdird 12081 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + (((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))) / 𝑥) = (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + ((((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥))) |
| 191 | 188, 190 | eqtrd 2777 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) = (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + ((((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥))) |
| 192 | 191 | mpteq2dva 5242 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥)) = (𝑥 ∈ (1(,)+∞) ↦ (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + ((((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥)))) |
| 193 | 184, 12 | rerpdivcld 13108 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ) |
| 194 | 22, 165 | remulcld 11291 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) ∈ ℝ) |
| 195 | 18, 194 | resubcld 11691 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) ∈ ℝ) |
| 196 | 195, 12 | rerpdivcld 13108 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥) ∈ ℝ) |
| 197 | 13 | selberg3r 27613 |
. . . . . . 7
⊢ (𝑥 ∈ (1(,)+∞) ↦
((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ 𝑂(1) |
| 198 | 197 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ 𝑂(1)) |
| 199 | 13 | selberg4r 27614 |
. . . . . . 7
⊢ (𝑥 ∈ (1(,)+∞) ↦
((((𝑅‘𝑥) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥)) ∈ 𝑂(1) |
| 200 | 199 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥)) ∈ 𝑂(1)) |
| 201 | 193, 196,
198, 200 | o1add2 15660 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + ((((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥))) ∈ 𝑂(1)) |
| 202 | 192, 201 | eqeltrd 2841 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥)) ∈ 𝑂(1)) |
| 203 | | ioossre 13448 |
. . . . 5
⊢
(1(,)+∞) ⊆ ℝ |
| 204 | | 1cnd 11256 |
. . . . . 6
⊢ (⊤
→ 1 ∈ ℂ) |
| 205 | 204 | halfcld 12511 |
. . . . 5
⊢ (⊤
→ (1 / 2) ∈ ℂ) |
| 206 | | o1const 15656 |
. . . . 5
⊢
(((1(,)+∞) ⊆ ℝ ∧ (1 / 2) ∈ ℂ) →
(𝑥 ∈ (1(,)+∞)
↦ (1 / 2)) ∈ 𝑂(1)) |
| 207 | 203, 205,
206 | sylancr 587 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (1 / 2)) ∈ 𝑂(1)) |
| 208 | 84, 85, 202, 207 | o1mul2 15661 |
. . 3
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) · (1 / 2))) ∈
𝑂(1)) |
| 209 | 81, 208 | eqeltrrd 2842 |
. 2
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)) |
| 210 | 209 | mptru 1547 |
1
⊢ (𝑥 ∈ (1(,)+∞) ↦
((((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ 𝑂(1) |