MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg34r Structured version   Visualization version   GIF version

Theorem selberg34r 26074
Description: The sum of selberg3r 26072 and selberg4r 26073. (Contributed by Mario Carneiro, 31-May-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
selberg34r (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
Distinct variable groups:   𝑚,𝑎,𝑛,𝑥   𝑦,𝑚,𝑅,𝑛,𝑥
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem selberg34r
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2re 11699 . . . . . . . . . 10 2 ∈ ℝ
21a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℝ)
3 elioore 12756 . . . . . . . . . . . . 13 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
43adantl 482 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
5 1rp 12381 . . . . . . . . . . . . 13 1 ∈ ℝ+
65a1i 11 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
7 1red 10630 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
8 eliooord 12784 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
98adantl 482 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
109simpld 495 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
117, 4, 10ltled 10776 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
124, 6, 11rpgecld 12458 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
13 pntrval.r . . . . . . . . . . . . 13 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
1413pntrf 26066 . . . . . . . . . . . 12 𝑅:ℝ+⟶ℝ
1514ffvelrni 6842 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
1612, 15syl 17 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (𝑅𝑥) ∈ ℝ)
1712relogcld 25133 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ)
1816, 17remulcld 10659 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑅𝑥) · (log‘𝑥)) ∈ ℝ)
192, 18remulcld 10659 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · ((𝑅𝑥) · (log‘𝑥))) ∈ ℝ)
2019recnd 10657 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · ((𝑅𝑥) · (log‘𝑥))) ∈ ℂ)
214, 10rplogcld 25139 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
222, 21rerpdivcld 12450 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ)
2322recnd 10657 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ)
24 fzfid 13329 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
2512adantr 481 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
26 elfznn 12924 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2726adantl 482 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2827nnrpd 12417 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
2925, 28rpdivcld 12436 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
3014ffvelrni 6842 . . . . . . . . . . . 12 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3129, 30syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
32 fzfid 13329 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...𝑛) ∈ Fin)
33 dvdsssfz1 15656 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
3427, 33syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ (1...𝑛))
3532, 34ssfid 8729 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦𝑛} ∈ Fin)
36 ssrab2 4053 . . . . . . . . . . . . . . . 16 {𝑦 ∈ ℕ ∣ 𝑦𝑛} ⊆ ℕ
37 simpr 485 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
3836, 37sseldi 3962 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → 𝑚 ∈ ℕ)
39 vmacl 25622 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
4038, 39syl 17 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘𝑚) ∈ ℝ)
41 dvdsdivcl 15654 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
4227, 41sylan 580 . . . . . . . . . . . . . . . 16 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})
4336, 42sseldi 3962 . . . . . . . . . . . . . . 15 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (𝑛 / 𝑚) ∈ ℕ)
44 vmacl 25622 . . . . . . . . . . . . . . 15 ((𝑛 / 𝑚) ∈ ℕ → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
4543, 44syl 17 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
4640, 45remulcld 10659 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
4735, 46fsumrecl 15079 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
48 vmacl 25622 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
4927, 48syl 17 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
5028relogcld 25133 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
5149, 50remulcld 10659 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℝ)
5247, 51resubcld 11056 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))) ∈ ℝ)
5331, 52remulcld 10659 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈ ℝ)
5424, 53fsumrecl 15079 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈ ℝ)
5554recnd 10657 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈ ℂ)
5623, 55mulcld 10649 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ∈ ℂ)
5720, 56subcld 10985 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) ∈ ℂ)
584recnd 10657 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
59 2cnd 11703 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ∈ ℂ)
6012rpne0d 12424 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ≠ 0)
61 2ne0 11729 . . . . . . 7 2 ≠ 0
6261a1i 11 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → 2 ≠ 0)
6357, 58, 59, 60, 62divdiv32d 11429 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) / 2) = ((((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 2) / 𝑥))
6457, 58, 60divcld 11404 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) ∈ ℂ)
6564, 59, 62divrecd 11407 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) / 2) = ((((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) · (1 / 2)))
6620, 56, 59, 62divsubdird 11443 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 2) = (((2 · ((𝑅𝑥) · (log‘𝑥))) / 2) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / 2)))
6718recnd 10657 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑅𝑥) · (log‘𝑥)) ∈ ℂ)
6867, 59, 62divcan3d 11409 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · ((𝑅𝑥) · (log‘𝑥))) / 2) = ((𝑅𝑥) · (log‘𝑥)))
6921rpcnd 12421 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ)
7021rpne0d 12424 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ≠ 0)
7159, 69, 55, 70div32d 11427 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) = (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))))
7271oveq1d 7160 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / 2) = ((2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 2))
7354, 21rerpdivcld 12450 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)) ∈ ℝ)
7473recnd 10657 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)) ∈ ℂ)
7574, 59, 62divcan3d 11409 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 2) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))
7672, 75eqtrd 2853 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / 2) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))
7768, 76oveq12d 7163 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · ((𝑅𝑥) · (log‘𝑥))) / 2) − (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / 2)) = (((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))))
7866, 77eqtrd 2853 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 2) = (((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))))
7978oveq1d 7160 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 2) / 𝑥) = ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥))
8063, 65, 793eqtr3d 2861 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) · (1 / 2)) = ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥))
8180mpteq2dva 5152 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) · (1 / 2))) = (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)))
8222, 54remulcld 10659 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ∈ ℝ)
8319, 82resubcld 11056 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) ∈ ℝ)
8483, 12rerpdivcld 12450 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) ∈ ℝ)
857rehalfcld 11872 . . . 4 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (1 / 2) ∈ ℝ)
8631recnd 10657 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
8747recnd 10657 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
8849recnd 10657 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℂ)
8950recnd 10657 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
9088, 89mulcld 10649 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (log‘𝑛)) ∈ ℂ)
9186, 87, 90subdid 11084 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) = (((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑛) · (log‘𝑛)))))
9286, 88, 89mul12d 10837 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑛) · (log‘𝑛))) = ((Λ‘𝑛) · ((𝑅‘(𝑥 / 𝑛)) · (log‘𝑛))))
9388, 86, 89mulassd 10652 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) = ((Λ‘𝑛) · ((𝑅‘(𝑥 / 𝑛)) · (log‘𝑛))))
9492, 93eqtr4d 2856 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑛) · (log‘𝑛))) = (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))
9594oveq2d 7161 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑛) · (log‘𝑛)))) = (((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
9691, 95eqtrd 2853 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) = (((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
9796sumeq2dv 15048 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
9886, 87mulcld 10649 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) ∈ ℂ)
9988, 86mulcld 10649 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
10099, 89mulcld 10649 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
10124, 98, 100fsumsub 15131 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
10246recnd 10657 . . . . . . . . . . . . . . . . . 18 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ)
10335, 86, 102fsummulc2 15127 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
104103sumeq2dv 15048 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))))
105 oveq2 7153 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑚 · 𝑘) → (𝑥 / 𝑛) = (𝑥 / (𝑚 · 𝑘)))
106105fveq2d 6667 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑚 · 𝑘) → (𝑅‘(𝑥 / 𝑛)) = (𝑅‘(𝑥 / (𝑚 · 𝑘))))
107 fvoveq1 7168 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑚 · 𝑘) → (Λ‘(𝑛 / 𝑚)) = (Λ‘((𝑚 · 𝑘) / 𝑚)))
108107oveq2d 7161 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑚 · 𝑘) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) = ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))))
109106, 108oveq12d 7163 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑚 · 𝑘) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = ((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚)))))
11031adantrr 713 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
11140anasss 467 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (Λ‘𝑚) ∈ ℝ)
11245anasss 467 . . . . . . . . . . . . . . . . . . . 20 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → (Λ‘(𝑛 / 𝑚)) ∈ ℝ)
113111, 112remulcld 10659 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ)
114110, 113remulcld 10659 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) ∈ ℝ)
115114recnd 10657 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛})) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) ∈ ℂ)
116109, 4, 115dvdsflsumcom 25692 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚)))))
11758ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑥 ∈ ℂ)
118 elfznn 12924 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
119118adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
120119nnrpd 12417 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
121120adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑚 ∈ ℝ+)
122121rpcnd 12421 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑚 ∈ ℂ)
123 elfznn 12924 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚))) → 𝑘 ∈ ℕ)
124123adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑘 ∈ ℕ)
125124nncnd 11642 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑘 ∈ ℂ)
126121rpne0d 12424 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑚 ≠ 0)
127124nnne0d 11675 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑘 ≠ 0)
128117, 122, 125, 126, 127divdiv1d 11435 . . . . . . . . . . . . . . . . . . . . . . 23 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑥 / 𝑚) / 𝑘) = (𝑥 / (𝑚 · 𝑘)))
129128eqcomd 2824 . . . . . . . . . . . . . . . . . . . . . 22 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑥 / (𝑚 · 𝑘)) = ((𝑥 / 𝑚) / 𝑘))
130129fveq2d 6667 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑅‘(𝑥 / (𝑚 · 𝑘))) = (𝑅‘((𝑥 / 𝑚) / 𝑘)))
131125, 122, 126divcan3d 11409 . . . . . . . . . . . . . . . . . . . . . . 23 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑚 · 𝑘) / 𝑚) = 𝑘)
132131fveq2d 6667 . . . . . . . . . . . . . . . . . . . . . 22 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘((𝑚 · 𝑘) / 𝑚)) = (Λ‘𝑘))
133132oveq2d 7161 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚))) = ((Λ‘𝑚) · (Λ‘𝑘)))
134130, 133oveq12d 7163 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚)))) = ((𝑅‘((𝑥 / 𝑚) / 𝑘)) · ((Λ‘𝑚) · (Λ‘𝑘))))
13512ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑥 ∈ ℝ+)
136135, 121rpdivcld 12436 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑥 / 𝑚) ∈ ℝ+)
137124nnrpd 12417 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑘 ∈ ℝ+)
138136, 137rpdivcld 12436 . . . . . . . . . . . . . . . . . . . . . . 23 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑥 / 𝑚) / 𝑘) ∈ ℝ+)
13914ffvelrni 6842 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 / 𝑚) / 𝑘) ∈ ℝ+ → (𝑅‘((𝑥 / 𝑚) / 𝑘)) ∈ ℝ)
140138, 139syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑅‘((𝑥 / 𝑚) / 𝑘)) ∈ ℝ)
141140recnd 10657 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑅‘((𝑥 / 𝑚) / 𝑘)) ∈ ℂ)
142119, 39syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
143142recnd 10657 . . . . . . . . . . . . . . . . . . . . . . 23 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℂ)
144143adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑚) ∈ ℂ)
145 vmacl 25622 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
146124, 145syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑘) ∈ ℝ)
147146recnd 10657 . . . . . . . . . . . . . . . . . . . . . 22 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑘) ∈ ℂ)
148144, 147mulcld 10649 . . . . . . . . . . . . . . . . . . . . 21 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((Λ‘𝑚) · (Λ‘𝑘)) ∈ ℂ)
149141, 148mulcomd 10650 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑅‘((𝑥 / 𝑚) / 𝑘)) · ((Λ‘𝑚) · (Λ‘𝑘))) = (((Λ‘𝑚) · (Λ‘𝑘)) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))
150144, 147, 141mulassd 10652 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (((Λ‘𝑚) · (Λ‘𝑘)) · (𝑅‘((𝑥 / 𝑚) / 𝑘))) = ((Λ‘𝑚) · ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))
151134, 149, 1503eqtrd 2857 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚)))) = ((Λ‘𝑚) · ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))
152151sumeq2dv 15048 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚)))) = Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑚) · ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))
153 fzfid 13329 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑚))) ∈ Fin)
154146, 140remulcld 10659 . . . . . . . . . . . . . . . . . . . 20 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))) ∈ ℝ)
155154recnd 10657 . . . . . . . . . . . . . . . . . . 19 ((((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))) ∈ ℂ)
156153, 143, 155fsummulc2 15127 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) = Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑚) · ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))
157152, 156eqtr4d 2856 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚)))) = ((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))
158157sumeq2dv 15048 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚)))) = Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))
159104, 116, 1583eqtrd 2857 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))
160159oveq1d 7160 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
16197, 101, 1603eqtrd 2857 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))
162161oveq2d 7161 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) = ((2 / (log‘𝑥)) · (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
163153, 154fsumrecl 15079 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))) ∈ ℝ)
164142, 163remulcld 10659 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) ∈ ℝ)
16524, 164fsumrecl 15079 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) ∈ ℝ)
166165recnd 10657 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) ∈ ℂ)
16749, 31remulcld 10659 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
168167, 50remulcld 10659 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
16924, 168fsumrecl 15079 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
170169recnd 10657 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
17123, 166, 170subdid 11084 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
172162, 171eqtrd 2853 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) = (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
173172oveq2d 7161 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) = ((2 · ((𝑅𝑥) · (log‘𝑥))) − (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))))
17423, 166mulcld 10649 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) ∈ ℂ)
17522, 169remulcld 10659 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ)
176175recnd 10657 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
17720, 174, 176subsub3d 11015 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · ((𝑅𝑥) · (log‘𝑥))) − (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) = (((2 · ((𝑅𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))))
178173, 177eqtrd 2853 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) = (((2 · ((𝑅𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))))
179672timesd 11868 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (2 · ((𝑅𝑥) · (log‘𝑥))) = (((𝑅𝑥) · (log‘𝑥)) + ((𝑅𝑥) · (log‘𝑥))))
180179oveq1d 7160 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · ((𝑅𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((((𝑅𝑥) · (log‘𝑥)) + ((𝑅𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
18167, 176, 67add32d 10855 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((𝑅𝑥) · (log‘𝑥))) = ((((𝑅𝑥) · (log‘𝑥)) + ((𝑅𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))
182180, 181eqtr4d 2856 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · ((𝑅𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((𝑅𝑥) · (log‘𝑥))))
183182oveq1d 7160 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · ((𝑅𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) = (((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))))
18418, 175readdcld 10658 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ)
185184recnd 10657 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℂ)
186185, 67, 174addsubassd 11005 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) = ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + (((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))))
187178, 183, 1863eqtrd 2857 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) = ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + (((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))))
188187oveq1d 7160 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) = (((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + (((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))) / 𝑥))
18967, 174subcld 10985 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) ∈ ℂ)
190185, 189, 58, 60divdird 11442 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + (((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))) / 𝑥) = (((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + ((((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥)))
191188, 190eqtrd 2853 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) = (((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + ((((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥)))
192191mpteq2dva 5152 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥)) = (𝑥 ∈ (1(,)+∞) ↦ (((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + ((((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥))))
193184, 12rerpdivcld 12450 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ)
19422, 165remulcld 10659 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) ∈ ℝ)
19518, 194resubcld 11056 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → (((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) ∈ ℝ)
196195, 12rerpdivcld 12450 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1(,)+∞)) → ((((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥) ∈ ℝ)
19713selberg3r 26072 . . . . . . 7 (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ 𝑂(1)
198197a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ 𝑂(1))
19913selberg4r 26073 . . . . . . 7 (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥)) ∈ 𝑂(1)
200199a1i 11 . . . . . 6 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥)) ∈ 𝑂(1))
201193, 196, 198, 200o1add2 14968 . . . . 5 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((((𝑅𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + ((((𝑅𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥))) ∈ 𝑂(1))
202192, 201eqeltrd 2910 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥)) ∈ 𝑂(1))
203 ioossre 12786 . . . . 5 (1(,)+∞) ⊆ ℝ
204 1cnd 10624 . . . . . 6 (⊤ → 1 ∈ ℂ)
205204halfcld 11870 . . . . 5 (⊤ → (1 / 2) ∈ ℂ)
206 o1const 14964 . . . . 5 (((1(,)+∞) ⊆ ℝ ∧ (1 / 2) ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ (1 / 2)) ∈ 𝑂(1))
207203, 205, 206sylancr 587 . . . 4 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ (1 / 2)) ∈ 𝑂(1))
20884, 85, 202, 207o1mul2 14969 . . 3 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((2 · ((𝑅𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) · (1 / 2))) ∈ 𝑂(1))
20981, 208eqeltrrd 2911 . 2 (⊤ → (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ 𝑂(1))
210209mptru 1535 1 (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1528  wtru 1529  wcel 2105  wne 3013  {crab 3139  wss 3933   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  +∞cpnf 10660   < clt 10663  cmin 10858   / cdiv 11285  cn 11626  2c2 11680  +crp 12377  (,)cioo 12726  ...cfz 12880  cfl 13148  𝑂(1)co1 14831  Σcsu 15030  cdvds 15595  logclog 25065  Λcvma 25596  ψcchp 25597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-o1 14835  df-lo1 14836  df-sum 15031  df-ef 15409  df-e 15410  df-sin 15411  df-cos 15412  df-tan 15413  df-pi 15414  df-dvds 15596  df-gcd 15832  df-prm 16004  df-pc 16162  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-cmp 21923  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-ulm 24892  df-log 25067  df-cxp 25068  df-atan 25372  df-em 25497  df-cht 25601  df-vma 25602  df-chp 25603  df-ppi 25604  df-mu 25605
This theorem is referenced by:  pntrlog2bndlem1  26080
  Copyright terms: Public domain W3C validator