Step | Hyp | Ref
| Expression |
1 | | 1re 10906 |
. . . . . . 7
⊢ 1 ∈
ℝ |
2 | | elicopnf 13106 |
. . . . . . 7
⊢ (1 ∈
ℝ → (𝑥 ∈
(1[,)+∞) ↔ (𝑥
∈ ℝ ∧ 1 ≤ 𝑥))) |
3 | 1, 2 | mp1i 13 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
(1[,)+∞) ↔ (𝑥
∈ ℝ ∧ 1 ≤ 𝑥))) |
4 | 3 | simprbda 498 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → 𝑥 ∈ ℝ) |
5 | 4 | ex 412 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
(1[,)+∞) → 𝑥
∈ ℝ)) |
6 | 5 | ssrdv 3923 |
. . 3
⊢ (⊤
→ (1[,)+∞) ⊆ ℝ) |
7 | 1 | a1i 11 |
. . 3
⊢ (⊤
→ 1 ∈ ℝ) |
8 | | chpcl 26178 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ →
(ψ‘𝑥) ∈
ℝ) |
9 | 4, 8 | syl 17 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → (ψ‘𝑥) ∈ ℝ) |
10 | | 1rp 12663 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ+ |
11 | 10 | a1i 11 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → 1 ∈ ℝ+) |
12 | 3 | simplbda 499 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → 1 ≤ 𝑥) |
13 | 4, 11, 12 | rpgecld 12740 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → 𝑥 ∈ ℝ+) |
14 | 13 | relogcld 25683 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → (log‘𝑥) ∈ ℝ) |
15 | 9, 14 | remulcld 10936 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ) |
16 | | fzfid 13621 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin) |
17 | | elfznn 13214 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
18 | 17 | adantl 481 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ) |
19 | | vmacl 26172 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
20 | 18, 19 | syl 17 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈
ℝ) |
21 | 4 | adantr 480 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ) |
22 | 21, 18 | nndivred 11957 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ) |
23 | | chpcl 26178 |
. . . . . . . . . 10
⊢ ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ) |
24 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ) |
25 | 20, 24 | remulcld 10936 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· (ψ‘(𝑥 /
𝑛))) ∈
ℝ) |
26 | 16, 25 | fsumrecl 15374 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℝ) |
27 | 15, 26 | readdcld 10935 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) ∈ ℝ) |
28 | 27, 13 | rerpdivcld 12732 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ) |
29 | | 2re 11977 |
. . . . . . 7
⊢ 2 ∈
ℝ |
30 | 29 | a1i 11 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → 2 ∈ ℝ) |
31 | 30, 14 | remulcld 10936 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → (2 · (log‘𝑥)) ∈ ℝ) |
32 | 28, 31 | resubcld 11333 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈
ℝ) |
33 | 32 | recnd 10934 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈
ℂ) |
34 | 13 | ex 412 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
(1[,)+∞) → 𝑥
∈ ℝ+)) |
35 | 34 | ssrdv 3923 |
. . . 4
⊢ (⊤
→ (1[,)+∞) ⊆ ℝ+) |
36 | | selberg2 26604 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
↦ (((((ψ‘𝑥)
· (log‘𝑥)) +
Σ𝑛 ∈
(1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈
𝑂(1) |
37 | 36 | a1i 11 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈
𝑂(1)) |
38 | 35, 37 | o1res2 15200 |
. . 3
⊢ (⊤
→ (𝑥 ∈
(1[,)+∞) ↦ (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈
𝑂(1)) |
39 | | chpcl 26178 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ →
(ψ‘𝑦) ∈
ℝ) |
40 | 39 | ad2antrl 724 |
. . . . . 6
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → (ψ‘𝑦) ∈ ℝ) |
41 | | simprl 767 |
. . . . . . . 8
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ) |
42 | 10 | a1i 11 |
. . . . . . . 8
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ∈
ℝ+) |
43 | | simprr 769 |
. . . . . . . 8
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ 𝑦) |
44 | 41, 42, 43 | rpgecld 12740 |
. . . . . . 7
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ+) |
45 | 44 | relogcld 25683 |
. . . . . 6
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → (log‘𝑦) ∈ ℝ) |
46 | 40, 45 | remulcld 10936 |
. . . . 5
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ) |
47 | | fzfid 13621 |
. . . . . 6
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → (1...(⌊‘𝑦)) ∈ Fin) |
48 | | elfznn 13214 |
. . . . . . . . 9
⊢ (𝑛 ∈
(1...(⌊‘𝑦))
→ 𝑛 ∈
ℕ) |
49 | 48 | adantl 481 |
. . . . . . . 8
⊢
(((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℕ) |
50 | 49, 19 | syl 17 |
. . . . . . 7
⊢
(((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑛) ∈
ℝ) |
51 | 41 | adantr 480 |
. . . . . . . . 9
⊢
(((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑦 ∈ ℝ) |
52 | 51, 49 | nndivred 11957 |
. . . . . . . 8
⊢
(((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑦 / 𝑛) ∈ ℝ) |
53 | | chpcl 26178 |
. . . . . . . 8
⊢ ((𝑦 / 𝑛) ∈ ℝ → (ψ‘(𝑦 / 𝑛)) ∈ ℝ) |
54 | 52, 53 | syl 17 |
. . . . . . 7
⊢
(((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑦 / 𝑛)) ∈ ℝ) |
55 | 50, 54 | remulcld 10936 |
. . . . . 6
⊢
(((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) →
((Λ‘𝑛)
· (ψ‘(𝑦 /
𝑛))) ∈
ℝ) |
56 | 47, 55 | fsumrecl 15374 |
. . . . 5
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛))) ∈ ℝ) |
57 | 46, 56 | readdcld 10935 |
. . . 4
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → (((ψ‘𝑦) · (log‘𝑦)) + Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛)))) ∈ ℝ) |
58 | 29 | a1i 11 |
. . . . 5
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → 2 ∈ ℝ) |
59 | 58, 45 | remulcld 10936 |
. . . 4
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → (2 · (log‘𝑦)) ∈
ℝ) |
60 | 57, 59 | readdcld 10935 |
. . 3
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → ((((ψ‘𝑦) · (log‘𝑦)) + Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))) ∈
ℝ) |
61 | 32 | adantr 480 |
. . . . . 6
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈
ℝ) |
62 | 61 | recnd 10934 |
. . . . 5
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈
ℂ) |
63 | 62 | abscld 15076 |
. . . 4
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈
ℝ) |
64 | 28 | adantr 480 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ) |
65 | 64 | recnd 10934 |
. . . . . 6
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℂ) |
66 | 65 | abscld 15076 |
. . . . 5
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ ℝ) |
67 | 31 | adantr 480 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑥)) ∈
ℝ) |
68 | 67 | recnd 10934 |
. . . . . 6
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑥)) ∈
ℂ) |
69 | 68 | abscld 15076 |
. . . . 5
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(2 ·
(log‘𝑥))) ∈
ℝ) |
70 | 66, 69 | readdcld 10935 |
. . . 4
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) + (abs‘(2 · (log‘𝑥)))) ∈
ℝ) |
71 | 60 | ad2ant2r 743 |
. . . 4
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) · (log‘𝑦)) + Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))) ∈
ℝ) |
72 | 65, 68 | abs2dif2d 15098 |
. . . 4
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤
((abs‘((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) + (abs‘(2 · (log‘𝑥))))) |
73 | | simprll 775 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ) |
74 | 73, 39 | syl 17 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑦) ∈ ℝ) |
75 | 13 | adantr 480 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ+) |
76 | 4 | adantr 480 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ) |
77 | | simprr 769 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦) |
78 | 76, 73, 77 | ltled 11053 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ≤ 𝑦) |
79 | 73, 75, 78 | rpgecld 12740 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ+) |
80 | 79 | relogcld 25683 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℝ) |
81 | 74, 80 | remulcld 10936 |
. . . . . 6
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ) |
82 | 56 | ad2ant2r 743 |
. . . . . 6
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛))) ∈ ℝ) |
83 | 81, 82 | readdcld 10935 |
. . . . 5
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑦) · (log‘𝑦)) + Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛)))) ∈ ℝ) |
84 | 29 | a1i 11 |
. . . . . 6
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ) |
85 | 84, 80 | remulcld 10936 |
. . . . 5
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑦)) ∈
ℝ) |
86 | 76, 8 | syl 17 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ∈ ℝ) |
87 | 75 | relogcld 25683 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ) |
88 | 86, 87 | remulcld 10936 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ) |
89 | 26 | adantr 480 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℝ) |
90 | 88, 89 | readdcld 10935 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) ∈ ℝ) |
91 | | chpge0 26180 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → 0 ≤
(ψ‘𝑥)) |
92 | 76, 91 | syl 17 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (ψ‘𝑥)) |
93 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑥) |
94 | 76, 93 | logge0d 25690 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑥)) |
95 | 86, 87, 92, 94 | mulge0d 11482 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((ψ‘𝑥) · (log‘𝑥))) |
96 | | vmage0 26175 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → 0 ≤
(Λ‘𝑛)) |
97 | 18, 96 | syl 17 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤
(Λ‘𝑛)) |
98 | | chpge0 26180 |
. . . . . . . . . . . . 13
⊢ ((𝑥 / 𝑛) ∈ ℝ → 0 ≤
(ψ‘(𝑥 / 𝑛))) |
99 | 22, 98 | syl 17 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤
(ψ‘(𝑥 / 𝑛))) |
100 | 20, 24, 97, 99 | mulge0d 11482 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤
((Λ‘𝑛)
· (ψ‘(𝑥 /
𝑛)))) |
101 | 16, 25, 100 | fsumge0 15435 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1[,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) |
102 | 101 | adantr 480 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) |
103 | 88, 89, 95, 102 | addge0d 11481 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))))) |
104 | 90, 75, 103 | divge0d 12741 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) |
105 | 64, 104 | absidd 15062 |
. . . . . 6
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) = ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) |
106 | 10 | a1i 11 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ∈
ℝ+) |
107 | | chpwordi 26211 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦)) |
108 | 76, 73, 78, 107 | syl3anc 1369 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑥) ≤ (ψ‘𝑦)) |
109 | 75, 79 | logled 25687 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑥 ≤ 𝑦 ↔ (log‘𝑥) ≤ (log‘𝑦))) |
110 | 78, 109 | mpbid 231 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ≤ (log‘𝑦)) |
111 | 86, 74, 87, 80, 92, 94, 108, 110 | lemul12ad 11847 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) · (log‘𝑥)) ≤ ((ψ‘𝑦) · (log‘𝑦))) |
112 | | fzfid 13621 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘𝑦)) ∈ Fin) |
113 | 48 | adantl 481 |
. . . . . . . . . . . . 13
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℕ) |
114 | 113, 19 | syl 17 |
. . . . . . . . . . . 12
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑛) ∈
ℝ) |
115 | 76 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑥 ∈ ℝ) |
116 | 115, 113 | nndivred 11957 |
. . . . . . . . . . . . 13
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑥 / 𝑛) ∈ ℝ) |
117 | 116, 23 | syl 17 |
. . . . . . . . . . . 12
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ) |
118 | 114, 117 | remulcld 10936 |
. . . . . . . . . . 11
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) →
((Λ‘𝑛)
· (ψ‘(𝑥 /
𝑛))) ∈
ℝ) |
119 | 112, 118 | fsumrecl 15374 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ∈ ℝ) |
120 | 113, 96 | syl 17 |
. . . . . . . . . . . 12
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤
(Λ‘𝑛)) |
121 | 116, 98 | syl 17 |
. . . . . . . . . . . 12
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤
(ψ‘(𝑥 / 𝑛))) |
122 | 114, 117,
120, 121 | mulge0d 11482 |
. . . . . . . . . . 11
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤
((Λ‘𝑛)
· (ψ‘(𝑥 /
𝑛)))) |
123 | | flword2 13461 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦) → (⌊‘𝑦) ∈
(ℤ≥‘(⌊‘𝑥))) |
124 | 76, 73, 78, 123 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (⌊‘𝑦) ∈
(ℤ≥‘(⌊‘𝑥))) |
125 | | fzss2 13225 |
. . . . . . . . . . . 12
⊢
((⌊‘𝑦)
∈ (ℤ≥‘(⌊‘𝑥)) → (1...(⌊‘𝑥)) ⊆
(1...(⌊‘𝑦))) |
126 | 124, 125 | syl 17 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘𝑥)) ⊆
(1...(⌊‘𝑦))) |
127 | 112, 118,
122, 126 | fsumless 15436 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) |
128 | 73 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑦 ∈ ℝ) |
129 | 128, 113 | nndivred 11957 |
. . . . . . . . . . . . 13
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑦 / 𝑛) ∈ ℝ) |
130 | 129, 53 | syl 17 |
. . . . . . . . . . . 12
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑦 / 𝑛)) ∈ ℝ) |
131 | 114, 130 | remulcld 10936 |
. . . . . . . . . . 11
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) →
((Λ‘𝑛)
· (ψ‘(𝑦 /
𝑛))) ∈
ℝ) |
132 | 113 | nnrpd 12699 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℝ+) |
133 | 78 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑥 ≤ 𝑦) |
134 | 115, 128,
132, 133 | lediv1dd 12759 |
. . . . . . . . . . . . 13
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑥 / 𝑛) ≤ (𝑦 / 𝑛)) |
135 | | chpwordi 26211 |
. . . . . . . . . . . . 13
⊢ (((𝑥 / 𝑛) ∈ ℝ ∧ (𝑦 / 𝑛) ∈ ℝ ∧ (𝑥 / 𝑛) ≤ (𝑦 / 𝑛)) → (ψ‘(𝑥 / 𝑛)) ≤ (ψ‘(𝑦 / 𝑛))) |
136 | 116, 129,
134, 135 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑥 / 𝑛)) ≤ (ψ‘(𝑦 / 𝑛))) |
137 | 117, 130,
114, 120, 136 | lemul2ad 11845 |
. . . . . . . . . . 11
⊢
((((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) →
((Λ‘𝑛)
· (ψ‘(𝑥 /
𝑛))) ≤
((Λ‘𝑛)
· (ψ‘(𝑦 /
𝑛)))) |
138 | 112, 118,
131, 137 | fsumle 15439 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛)))) |
139 | 89, 119, 82, 127, 138 | letrd 11062 |
. . . . . . . . 9
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛)))) |
140 | 88, 89, 81, 82, 111, 139 | le2addd 11524 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) ≤ (((ψ‘𝑦) · (log‘𝑦)) + Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛))))) |
141 | 90, 83, 106, 76, 103, 140, 93 | lediv12ad 12760 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) ≤ ((((ψ‘𝑦) · (log‘𝑦)) + Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛)))) / 1)) |
142 | 83 | recnd 10934 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (((ψ‘𝑦) · (log‘𝑦)) + Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛)))) ∈ ℂ) |
143 | 142 | div1d 11673 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑦) · (log‘𝑦)) + Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛)))) / 1) = (((ψ‘𝑦) · (log‘𝑦)) + Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛))))) |
144 | 141, 143 | breqtrd 5096 |
. . . . . 6
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) ≤ (((ψ‘𝑦) · (log‘𝑦)) + Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛))))) |
145 | 105, 144 | eqbrtrd 5092 |
. . . . 5
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ≤ (((ψ‘𝑦) · (log‘𝑦)) + Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛))))) |
146 | | 2rp 12664 |
. . . . . . . . 9
⊢ 2 ∈
ℝ+ |
147 | | rpge0 12672 |
. . . . . . . . 9
⊢ (2 ∈
ℝ+ → 0 ≤ 2) |
148 | 146, 147 | mp1i 13 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 2) |
149 | 84, 87, 148, 94 | mulge0d 11482 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (2 · (log‘𝑥))) |
150 | 67, 149 | absidd 15062 |
. . . . . 6
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(2 ·
(log‘𝑥))) = (2
· (log‘𝑥))) |
151 | 87, 80, 84, 148, 110 | lemul2ad 11845 |
. . . . . 6
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑥)) ≤ (2 ·
(log‘𝑦))) |
152 | 150, 151 | eqbrtrd 5092 |
. . . . 5
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(2 ·
(log‘𝑥))) ≤ (2
· (log‘𝑦))) |
153 | 66, 69, 83, 85, 145, 152 | le2addd 11524 |
. . . 4
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) + (abs‘(2 · (log‘𝑥)))) ≤ ((((ψ‘𝑦) · (log‘𝑦)) + Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦)))) |
154 | 63, 70, 71, 72, 153 | letrd 11062 |
. . 3
⊢
(((⊤ ∧ 𝑥
∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ ((((ψ‘𝑦) · (log‘𝑦)) + Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦)))) |
155 | 6, 7, 33, 38, 60, 154 | o1bddrp 15179 |
. 2
⊢ (⊤
→ ∃𝑐 ∈
ℝ+ ∀𝑥 ∈
(1[,)+∞)(abs‘(((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐) |
156 | 155 | mptru 1546 |
1
⊢
∃𝑐 ∈
ℝ+ ∀𝑥 ∈
(1[,)+∞)(abs‘(((((ψ‘𝑥) · (log‘𝑥)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐 |