MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem3 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem3 25559
Description: Lemma for pntrlog2bnd 25564. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bndlem3.1 (𝜑𝐴 ∈ ℝ+)
pntrlog2bndlem3.2 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝐴)
Assertion
Ref Expression
pntrlog2bndlem3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥,𝑦,𝐴   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥,𝑦   𝑅,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)

Proof of Theorem pntrlog2bndlem3
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 1red 10294 . 2 (𝜑 → 1 ∈ ℝ)
2 pntrlog2bndlem3.1 . . . . 5 (𝜑𝐴 ∈ ℝ+)
32rpred 12070 . . . 4 (𝜑𝐴 ∈ ℝ)
43adantr 472 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ)
5 fzfid 12980 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
6 elfznn 12577 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
76adantl 473 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
87nnred 11291 . . . . . 6 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
9 elioore 12407 . . . . . . . . . . . . . 14 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
109adantl 473 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
11 1rp 12032 . . . . . . . . . . . . . 14 1 ∈ ℝ+
1211a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
13 1red 10294 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
14 eliooord 12435 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
1514adantl 473 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
1615simpld 488 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
1713, 10, 16ltled 10439 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
1810, 12, 17rpgecld 12109 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
1918adantr 472 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
207nnrpd 12068 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
2111a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ+)
2220, 21rpaddcld 12085 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℝ+)
2319, 22rpdivcld 12087 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℝ+)
24 pntrlog2bnd.r . . . . . . . . . . . 12 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2524pntrf 25543 . . . . . . . . . . 11 𝑅:ℝ+⟶ℝ
2625ffvelrni 6548 . . . . . . . . . 10 ((𝑥 / (𝑛 + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
2723, 26syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
2827recnd 10322 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℂ)
2919, 20rpdivcld 12087 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
3025ffvelrni 6548 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3129, 30syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3231recnd 10322 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3328, 32subcld 10646 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
3433abscld 14460 . . . . . 6 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ∈ ℝ)
358, 34remulcld 10324 . . . . 5 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ)
365, 35fsumrecl 14750 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ)
3710, 16rplogcld 24666 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
3818, 37rpmulcld 12086 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ+)
3936, 38rerpdivcld 12101 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
40 ioossre 12437 . . . 4 (1(,)+∞) ⊆ ℝ
412rpcnd 12072 . . . 4 (𝜑𝐴 ∈ ℂ)
42 o1const 14635 . . . 4 (((1(,)+∞) ⊆ ℝ ∧ 𝐴 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1))
4340, 41, 42sylancr 581 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1))
44 chpo1ubb 25461 . . . 4 𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝑐 · 𝑦)
45 pntsval.1 . . . . . 6 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
46 simpl 474 . . . . . 6 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝑐 · 𝑦)) → 𝑐 ∈ ℝ+)
47 simpr 477 . . . . . 6 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝑐 · 𝑦)) → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝑐 · 𝑦))
4845, 24, 46, 47pntrlog2bndlem2 25558 . . . . 5 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝑐 · 𝑦)) → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
4948rexlimiva 3175 . . . 4 (∃𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝑐 · 𝑦) → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
5044, 49mp1i 13 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
514, 39, 43, 50o1mul2 14640 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))) ∈ 𝑂(1))
524, 39remulcld 10324 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ ℝ)
5332abscld 14460 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
5428abscld 14460 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) ∈ ℝ)
5553, 54resubcld 10712 . . . . . 6 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) ∈ ℝ)
5645pntsf 25553 . . . . . . . . 9 𝑆:ℝ⟶ℝ
5756ffvelrni 6548 . . . . . . . 8 (𝑛 ∈ ℝ → (𝑆𝑛) ∈ ℝ)
588, 57syl 17 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) ∈ ℝ)
59 2re 11346 . . . . . . . . 9 2 ∈ ℝ
6059a1i 11 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℝ)
6120relogcld 24660 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
628, 61remulcld 10324 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (log‘𝑛)) ∈ ℝ)
6360, 62remulcld 10324 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑛 · (log‘𝑛))) ∈ ℝ)
6458, 63resubcld 10712 . . . . . 6 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))) ∈ ℝ)
6555, 64remulcld 10324 . . . . 5 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℝ)
665, 65fsumrecl 14750 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℝ)
6766, 38rerpdivcld 12101 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
6867recnd 10322 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℂ)
6968abscld 14460 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ ℝ)
7052recnd 10322 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ ℂ)
7170abscld 14460 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))) ∈ ℝ)
7266recnd 10322 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℂ)
7372abscld 14460 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ∈ ℝ)
744, 36remulcld 10324 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) ∈ ℝ)
7565recnd 10322 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℂ)
7675abscld 14460 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ∈ ℝ)
775, 76fsumrecl 14750 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ∈ ℝ)
785, 75fsumabs 14817 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))))
794adantr 472 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℝ)
8079, 35remulcld 10324 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) ∈ ℝ)
8155recnd 10322 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) ∈ ℂ)
8281abscld 14460 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))) ∈ ℝ)
8364recnd 10322 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))) ∈ ℂ)
8483abscld 14460 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℝ)
8579, 8remulcld 10324 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · 𝑛) ∈ ℝ)
8681absge0d 14468 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))))
8783absge0d 14468 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
8832, 28abs2difabsd 14483 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))) ≤ (abs‘((𝑅‘(𝑥 / 𝑛)) − (𝑅‘(𝑥 / (𝑛 + 1))))))
8932, 28abssubd 14477 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) − (𝑅‘(𝑥 / (𝑛 + 1))))) = (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))
9088, 89breqtrd 4835 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))) ≤ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))
9158recnd 10322 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) ∈ ℂ)
928recnd 10322 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
937nnne0d 11322 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
9491, 92, 93divcld 11055 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) / 𝑛) ∈ ℂ)
95 2cnd 11350 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
9661recnd 10322 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
9795, 96mulcld 10314 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (log‘𝑛)) ∈ ℂ)
9894, 97subcld 10646 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛))) ∈ ℂ)
9998, 92absmuld 14478 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛))) · 𝑛)) = ((abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) · (abs‘𝑛)))
10094, 97, 92subdird 10741 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛))) · 𝑛) = ((((𝑆𝑛) / 𝑛) · 𝑛) − ((2 · (log‘𝑛)) · 𝑛)))
10191, 92, 93divcan1d 11056 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) / 𝑛) · 𝑛) = (𝑆𝑛))
10295, 92, 96mul32d 10500 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑛) · (log‘𝑛)) = ((2 · (log‘𝑛)) · 𝑛))
10395, 92, 96mulassd 10317 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑛) · (log‘𝑛)) = (2 · (𝑛 · (log‘𝑛))))
104102, 103eqtr3d 2801 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · (log‘𝑛)) · 𝑛) = (2 · (𝑛 · (log‘𝑛))))
105101, 104oveq12d 6860 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑆𝑛) / 𝑛) · 𝑛) − ((2 · (log‘𝑛)) · 𝑛)) = ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))
106100, 105eqtrd 2799 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛))) · 𝑛) = ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))
107106fveq2d 6379 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛))) · 𝑛)) = (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
10820rpge0d 12074 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ 𝑛)
1098, 108absidd 14446 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛) = 𝑛)
110109oveq2d 6858 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) · (abs‘𝑛)) = ((abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) · 𝑛))
11199, 107, 1103eqtr3d 2807 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) = ((abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) · 𝑛))
11298abscld 14460 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) ∈ ℝ)
113 fveq2 6375 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (𝑆𝑦) = (𝑆𝑛))
114 id 22 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛𝑦 = 𝑛)
115113, 114oveq12d 6860 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑛 → ((𝑆𝑦) / 𝑦) = ((𝑆𝑛) / 𝑛))
116 fveq2 6375 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (log‘𝑦) = (log‘𝑛))
117116oveq2d 6858 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑛 → (2 · (log‘𝑦)) = (2 · (log‘𝑛)))
118115, 117oveq12d 6860 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑛 → (((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦))) = (((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛))))
119118fveq2d 6379 . . . . . . . . . . . . . . 15 (𝑦 = 𝑛 → (abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) = (abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))))
120119breq1d 4819 . . . . . . . . . . . . . 14 (𝑦 = 𝑛 → ((abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝐴 ↔ (abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) ≤ 𝐴))
121 pntrlog2bndlem3.2 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝐴)
122121ad2antrr 717 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝐴)
1237nnge1d 11320 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
124 1re 10293 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
125 elicopnf 12472 . . . . . . . . . . . . . . . 16 (1 ∈ ℝ → (𝑛 ∈ (1[,)+∞) ↔ (𝑛 ∈ ℝ ∧ 1 ≤ 𝑛)))
126124, 125ax-mp 5 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1[,)+∞) ↔ (𝑛 ∈ ℝ ∧ 1 ≤ 𝑛))
1278, 123, 126sylanbrc 578 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ (1[,)+∞))
128120, 122, 127rspcdva 3467 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) ≤ 𝐴)
129112, 79, 8, 108, 128lemul1ad 11217 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) · 𝑛) ≤ (𝐴 · 𝑛))
130111, 129eqbrtrd 4831 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ≤ (𝐴 · 𝑛))
13182, 34, 84, 85, 86, 87, 90, 130lemul12ad 11220 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))) · (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ≤ ((abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) · (𝐴 · 𝑛)))
13281, 83absmuld 14478 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) = ((abs‘((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))) · (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))))
13341ad2antrr 717 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℂ)
13434recnd 10322 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ∈ ℂ)
135133, 92, 134mulassd 10317 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 · 𝑛) · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) = (𝐴 · (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))))
136133, 92mulcld 10314 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · 𝑛) ∈ ℂ)
137136, 134mulcomd 10315 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 · 𝑛) · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) = ((abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) · (𝐴 · 𝑛)))
138135, 137eqtr3d 2801 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) = ((abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) · (𝐴 · 𝑛)))
139131, 132, 1383brtr4d 4841 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ≤ (𝐴 · (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))))
1405, 76, 80, 139fsumle 14815 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(𝐴 · (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))))
14141adantr 472 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℂ)
14235recnd 10322 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℂ)
1435, 141, 142fsummulc2 14800 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(𝐴 · (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))))
144140, 143breqtrrd 4837 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ≤ (𝐴 · Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))))
14573, 77, 74, 78, 144letrd 10448 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ≤ (𝐴 · Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))))
14673, 74, 38, 145lediv1dd 12128 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) ≤ ((𝐴 · Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) / (𝑥 · (log‘𝑥))))
14738rpcnd 12072 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
14838rpne0d 12075 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0)
14972, 147, 148absdivd 14479 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (abs‘(𝑥 · (log‘𝑥)))))
15038rpred 12070 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ)
15138rpge0d 12074 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝑥 · (log‘𝑥)))
152150, 151absidd 14446 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑥 · (log‘𝑥))) = (𝑥 · (log‘𝑥)))
153152oveq2d 6858 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (abs‘(𝑥 · (log‘𝑥)))) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))))
154149, 153eqtr2d 2800 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))))
15536recnd 10322 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℂ)
156141, 155, 147, 148divassd 11090 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 · Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) / (𝑥 · (log‘𝑥))) = (𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))))
157146, 154, 1563brtr3d 4840 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))))
15852leabsd 14438 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))))
15969, 52, 71, 157, 158letrd 10448 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))))
160159adantrr 708 . 2 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))))
1611, 51, 52, 68, 160o1le 14668 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  wrex 3056  wss 3732   class class class wbr 4809  cmpt 4888  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  1c1 10190   + caddc 10192   · cmul 10194  +∞cpnf 10325   < clt 10328  cle 10329  cmin 10520   / cdiv 10938  cn 11274  2c2 11327  +crp 12028  (,)cioo 12377  [,)cico 12379  ...cfz 12533  cfl 12799  abscabs 14259  𝑂(1)co1 14502  Σcsu 14701  logclog 24592  Λcvma 25109  ψcchp 25110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-xnn0 11611  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14092  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-limsup 14487  df-clim 14504  df-rlim 14505  df-o1 14506  df-lo1 14507  df-sum 14702  df-ef 15080  df-e 15081  df-sin 15082  df-cos 15083  df-pi 15085  df-dvds 15266  df-gcd 15498  df-prm 15666  df-pc 15821  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922  df-log 24594  df-cxp 24595  df-em 25010  df-cht 25114  df-vma 25115  df-chp 25116  df-ppi 25117
This theorem is referenced by:  pntrlog2bndlem4  25560
  Copyright terms: Public domain W3C validator