MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem3 Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem3 26167
Description: Lemma for pntrlog2bnd 26172. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bndlem3.1 (𝜑𝐴 ∈ ℝ+)
pntrlog2bndlem3.2 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝐴)
Assertion
Ref Expression
pntrlog2bndlem3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
Distinct variable groups:   𝑖,𝑎,𝑛,𝑥,𝑦,𝐴   𝜑,𝑛,𝑥   𝑆,𝑛,𝑥,𝑦   𝑅,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)

Proof of Theorem pntrlog2bndlem3
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 1red 10635 . 2 (𝜑 → 1 ∈ ℝ)
2 pntrlog2bndlem3.1 . . . . 5 (𝜑𝐴 ∈ ℝ+)
32rpred 12423 . . . 4 (𝜑𝐴 ∈ ℝ)
43adantr 484 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ)
5 fzfid 13340 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
6 elfznn 12935 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
76adantl 485 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
87nnred 11644 . . . . . 6 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
9 elioore 12760 . . . . . . . . . . . . . 14 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
109adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
11 1rp 12385 . . . . . . . . . . . . . 14 1 ∈ ℝ+
1211a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
13 1red 10635 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
14 eliooord 12788 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
1514adantl 485 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
1615simpld 498 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
1713, 10, 16ltled 10781 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
1810, 12, 17rpgecld 12462 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
1918adantr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
207nnrpd 12421 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
2111a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ+)
2220, 21rpaddcld 12438 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 + 1) ∈ ℝ+)
2319, 22rpdivcld 12440 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / (𝑛 + 1)) ∈ ℝ+)
24 pntrlog2bnd.r . . . . . . . . . . . 12 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2524pntrf 26151 . . . . . . . . . . 11 𝑅:ℝ+⟶ℝ
2625ffvelrni 6831 . . . . . . . . . 10 ((𝑥 / (𝑛 + 1)) ∈ ℝ+ → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
2723, 26syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℝ)
2827recnd 10662 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / (𝑛 + 1))) ∈ ℂ)
2919, 20rpdivcld 12440 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
3025ffvelrni 6831 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3129, 30syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ)
3231recnd 10662 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ)
3328, 32subcld 10990 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))) ∈ ℂ)
3433abscld 14792 . . . . . 6 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ∈ ℝ)
358, 34remulcld 10664 . . . . 5 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ)
365, 35fsumrecl 15087 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℝ)
3710, 16rplogcld 25224 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ+)
3818, 37rpmulcld 12439 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ+)
3936, 38rerpdivcld 12454 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
40 ioossre 12790 . . . 4 (1(,)+∞) ⊆ ℝ
412rpcnd 12425 . . . 4 (𝜑𝐴 ∈ ℂ)
42 o1const 14972 . . . 4 (((1(,)+∞) ⊆ ℝ ∧ 𝐴 ∈ ℂ) → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1))
4340, 41, 42sylancr 590 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ 𝐴) ∈ 𝑂(1))
44 chpo1ubb 26069 . . . 4 𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝑐 · 𝑦)
45 pntsval.1 . . . . . 6 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
46 simpl 486 . . . . . 6 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝑐 · 𝑦)) → 𝑐 ∈ ℝ+)
47 simpr 488 . . . . . 6 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝑐 · 𝑦)) → ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝑐 · 𝑦))
4845, 24, 46, 47pntrlog2bndlem2 26166 . . . . 5 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝑐 · 𝑦)) → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
4948rexlimiva 3243 . . . 4 (∃𝑐 ∈ ℝ+𝑦 ∈ ℝ+ (ψ‘𝑦) ≤ (𝑐 · 𝑦) → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
5044, 49mp1i 13 . . 3 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
514, 39, 43, 50o1mul2 14977 . 2 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))) ∈ 𝑂(1))
524, 39remulcld 10664 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ ℝ)
5332abscld 14792 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / 𝑛))) ∈ ℝ)
5428abscld 14792 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))) ∈ ℝ)
5553, 54resubcld 11061 . . . . . 6 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) ∈ ℝ)
5645pntsf 26161 . . . . . . . . 9 𝑆:ℝ⟶ℝ
5756ffvelrni 6831 . . . . . . . 8 (𝑛 ∈ ℝ → (𝑆𝑛) ∈ ℝ)
588, 57syl 17 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) ∈ ℝ)
59 2re 11703 . . . . . . . . 9 2 ∈ ℝ
6059a1i 11 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℝ)
6120relogcld 25218 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
628, 61remulcld 10664 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (log‘𝑛)) ∈ ℝ)
6360, 62remulcld 10664 . . . . . . 7 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (𝑛 · (log‘𝑛))) ∈ ℝ)
6458, 63resubcld 11061 . . . . . 6 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))) ∈ ℝ)
6555, 64remulcld 10664 . . . . 5 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℝ)
665, 65fsumrecl 15087 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℝ)
6766, 38rerpdivcld 12454 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℝ)
6867recnd 10662 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥))) ∈ ℂ)
6968abscld 14792 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ ℝ)
7052recnd 10662 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ ℂ)
7170abscld 14792 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))) ∈ ℝ)
7266recnd 10662 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℂ)
7372abscld 14792 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ∈ ℝ)
744, 36remulcld 10664 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) ∈ ℝ)
7565recnd 10662 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℂ)
7675abscld 14792 . . . . . . . 8 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ∈ ℝ)
775, 76fsumrecl 15087 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ∈ ℝ)
785, 75fsumabs 15152 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))))
794adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℝ)
8079, 35remulcld 10664 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) ∈ ℝ)
8155recnd 10662 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) ∈ ℂ)
8281abscld 14792 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))) ∈ ℝ)
8364recnd 10662 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))) ∈ ℂ)
8483abscld 14792 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ∈ ℝ)
8579, 8remulcld 10664 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · 𝑛) ∈ ℝ)
8681absge0d 14800 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))))
8783absge0d 14800 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
8832, 28abs2difabsd 14815 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))) ≤ (abs‘((𝑅‘(𝑥 / 𝑛)) − (𝑅‘(𝑥 / (𝑛 + 1))))))
8932, 28abssubd 14809 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / 𝑛)) − (𝑅‘(𝑥 / (𝑛 + 1))))) = (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))
9088, 89breqtrd 5059 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))) ≤ (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))
9158recnd 10662 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑆𝑛) ∈ ℂ)
928recnd 10662 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
937nnne0d 11679 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
9491, 92, 93divcld 11409 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑆𝑛) / 𝑛) ∈ ℂ)
95 2cnd 11707 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
9661recnd 10662 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℂ)
9795, 96mulcld 10654 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (log‘𝑛)) ∈ ℂ)
9894, 97subcld 10990 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛))) ∈ ℂ)
9998, 92absmuld 14810 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛))) · 𝑛)) = ((abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) · (abs‘𝑛)))
10094, 97, 92subdird 11090 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛))) · 𝑛) = ((((𝑆𝑛) / 𝑛) · 𝑛) − ((2 · (log‘𝑛)) · 𝑛)))
10191, 92, 93divcan1d 11410 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑆𝑛) / 𝑛) · 𝑛) = (𝑆𝑛))
10295, 92, 96mul32d 10843 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑛) · (log‘𝑛)) = ((2 · (log‘𝑛)) · 𝑛))
10395, 92, 96mulassd 10657 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · 𝑛) · (log‘𝑛)) = (2 · (𝑛 · (log‘𝑛))))
104102, 103eqtr3d 2838 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · (log‘𝑛)) · 𝑛) = (2 · (𝑛 · (log‘𝑛))))
105101, 104oveq12d 7157 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑆𝑛) / 𝑛) · 𝑛) − ((2 · (log‘𝑛)) · 𝑛)) = ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))
106100, 105eqtrd 2836 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛))) · 𝑛) = ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))
107106fveq2d 6653 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛))) · 𝑛)) = (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))))
10820rpge0d 12427 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ 𝑛)
1098, 108absidd 14778 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑛) = 𝑛)
110109oveq2d 7155 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) · (abs‘𝑛)) = ((abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) · 𝑛))
11199, 107, 1103eqtr3d 2844 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) = ((abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) · 𝑛))
11298abscld 14792 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) ∈ ℝ)
113 fveq2 6649 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (𝑆𝑦) = (𝑆𝑛))
114 id 22 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛𝑦 = 𝑛)
115113, 114oveq12d 7157 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑛 → ((𝑆𝑦) / 𝑦) = ((𝑆𝑛) / 𝑛))
116 fveq2 6649 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (log‘𝑦) = (log‘𝑛))
117116oveq2d 7155 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑛 → (2 · (log‘𝑦)) = (2 · (log‘𝑛)))
118115, 117oveq12d 7157 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑛 → (((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦))) = (((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛))))
119118fveq2d 6653 . . . . . . . . . . . . . . 15 (𝑦 = 𝑛 → (abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) = (abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))))
120119breq1d 5043 . . . . . . . . . . . . . 14 (𝑦 = 𝑛 → ((abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝐴 ↔ (abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) ≤ 𝐴))
121 pntrlog2bndlem3.2 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝐴)
122121ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ∀𝑦 ∈ (1[,)+∞)(abs‘(((𝑆𝑦) / 𝑦) − (2 · (log‘𝑦)))) ≤ 𝐴)
1237nnge1d 11677 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
124 1re 10634 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
125 elicopnf 12827 . . . . . . . . . . . . . . . 16 (1 ∈ ℝ → (𝑛 ∈ (1[,)+∞) ↔ (𝑛 ∈ ℝ ∧ 1 ≤ 𝑛)))
126124, 125ax-mp 5 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1[,)+∞) ↔ (𝑛 ∈ ℝ ∧ 1 ≤ 𝑛))
1278, 123, 126sylanbrc 586 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ (1[,)+∞))
128120, 122, 127rspcdva 3576 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) ≤ 𝐴)
129112, 79, 8, 108, 128lemul1ad 11572 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(((𝑆𝑛) / 𝑛) − (2 · (log‘𝑛)))) · 𝑛) ≤ (𝐴 · 𝑛))
130111, 129eqbrtrd 5055 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) ≤ (𝐴 · 𝑛))
13182, 34, 84, 85, 86, 87, 90, 130lemul12ad 11575 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))) · (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ≤ ((abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) · (𝐴 · 𝑛)))
13281, 83absmuld 14810 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) = ((abs‘((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1)))))) · (abs‘((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))))
13341ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴 ∈ ℂ)
13434recnd 10662 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) ∈ ℂ)
135133, 92, 134mulassd 10657 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 · 𝑛) · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) = (𝐴 · (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))))
136133, 92mulcld 10654 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · 𝑛) ∈ ℂ)
137136, 134mulcomd 10655 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐴 · 𝑛) · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) = ((abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) · (𝐴 · 𝑛)))
138135, 137eqtr3d 2838 . . . . . . . . . 10 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐴 · (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) = ((abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))) · (𝐴 · 𝑛)))
139131, 132, 1383brtr4d 5065 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ≤ (𝐴 · (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))))
1405, 76, 80, 139fsumle 15150 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(𝐴 · (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))))
14141adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℂ)
14235recnd 10662 . . . . . . . . 9 (((𝜑𝑥 ∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℂ)
1435, 141, 142fsummulc2 15135 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(𝐴 · (𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))))
144140, 143breqtrrd 5061 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ≤ (𝐴 · Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))))
14573, 77, 74, 78, 144letrd 10790 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) ≤ (𝐴 · Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))))
14673, 74, 38, 145lediv1dd 12481 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) ≤ ((𝐴 · Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) / (𝑥 · (log‘𝑥))))
14738rpcnd 12425 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℂ)
14838rpne0d 12428 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ≠ 0)
14972, 147, 148absdivd 14811 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (abs‘(𝑥 · (log‘𝑥)))))
15038rpred 12423 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 · (log‘𝑥)) ∈ ℝ)
15138rpge0d 12427 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ (𝑥 · (log‘𝑥)))
152150, 151absidd 14778 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(𝑥 · (log‘𝑥))) = (𝑥 · (log‘𝑥)))
153152oveq2d 7155 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (abs‘(𝑥 · (log‘𝑥)))) = ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))))
154149, 153eqtr2d 2837 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛)))))) / (𝑥 · (log‘𝑥))) = (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))))
15536recnd 10662 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) ∈ ℂ)
156141, 155, 147, 148divassd 11444 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝐴 · Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛)))))) / (𝑥 · (log‘𝑥))) = (𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))))
157146, 154, 1563brtr3d 5064 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))))
15852leabsd 14770 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))))
15969, 52, 71, 157, 158letrd 10790 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))))
160159adantrr 716 . 2 ((𝜑 ∧ (𝑥 ∈ (1(,)+∞) ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ≤ (abs‘(𝐴 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(𝑛 · (abs‘((𝑅‘(𝑥 / (𝑛 + 1))) − (𝑅‘(𝑥 / 𝑛))))) / (𝑥 · (log‘𝑥))))))
1611, 51, 52, 68, 160o1le 15005 1 (𝜑 → (𝑥 ∈ (1(,)+∞) ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((abs‘(𝑅‘(𝑥 / 𝑛))) − (abs‘(𝑅‘(𝑥 / (𝑛 + 1))))) · ((𝑆𝑛) − (2 · (𝑛 · (log‘𝑛))))) / (𝑥 · (log‘𝑥)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wral 3109  wrex 3110  wss 3884   class class class wbr 5033  cmpt 5113  cfv 6328  (class class class)co 7139  cc 10528  cr 10529  1c1 10531   + caddc 10533   · cmul 10535  +∞cpnf 10665   < clt 10668  cle 10669  cmin 10863   / cdiv 11290  cn 11629  2c2 11684  +crp 12381  (,)cioo 12730  [,)cico 12732  ...cfz 12889  cfl 13159  abscabs 14589  𝑂(1)co1 14839  Σcsu 15038  logclog 25150  Λcvma 25681  ψcchp 25682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-o1 14843  df-lo1 14844  df-sum 15039  df-ef 15417  df-e 15418  df-sin 15419  df-cos 15420  df-pi 15422  df-dvds 15604  df-gcd 15838  df-prm 16010  df-pc 16168  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-limc 24473  df-dv 24474  df-log 25152  df-cxp 25153  df-em 25582  df-cht 25686  df-vma 25687  df-chp 25688  df-ppi 25689
This theorem is referenced by:  pntrlog2bndlem4  26168
  Copyright terms: Public domain W3C validator