MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3lem2 Structured version   Visualization version   GIF version

Theorem selberg3lem2 26134
Description: Lemma for selberg3 26135. Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selberg3lem2 (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem selberg3lem2
Dummy variables 𝑚 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 10641 . . . . . . . 8 1 ∈ ℝ
2 elicopnf 12834 . . . . . . . 8 (1 ∈ ℝ → (𝑦 ∈ (1[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)))
31, 2ax-mp 5 . . . . . . 7 (𝑦 ∈ (1[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦))
43simplbi 500 . . . . . 6 (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ)
54ssriv 3971 . . . . 5 (1[,)+∞) ⊆ ℝ
65a1i 11 . . . 4 (⊤ → (1[,)+∞) ⊆ ℝ)
71a1i 11 . . . 4 (⊤ → 1 ∈ ℝ)
8 fzfid 13342 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (1...(⌊‘𝑦)) ∈ Fin)
9 elfznn 12937 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘𝑦)) → 𝑚 ∈ ℕ)
109adantl 484 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℕ)
11 vmacl 25695 . . . . . . . . . 10 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
1210, 11syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑚) ∈ ℝ)
1310nnrpd 12430 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℝ+)
1413relogcld 25206 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → (log‘𝑚) ∈ ℝ)
1512, 14remulcld 10671 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
168, 15fsumrecl 15091 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
174adantl 484 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ)
18 chpcl 25701 . . . . . . . . 9 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
1917, 18syl 17 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (ψ‘𝑦) ∈ ℝ)
20 1rp 12394 . . . . . . . . . . 11 1 ∈ ℝ+
2120a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ+)
223simprbi 499 . . . . . . . . . . 11 (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦)
2322adantl 484 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
2417, 21, 23rpgecld 12471 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ+)
2524relogcld 25206 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (log‘𝑦) ∈ ℝ)
2619, 25remulcld 10671 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
2716, 26resubcld 11068 . . . . . 6 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
2827, 24rerpdivcld 12463 . . . . 5 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) ∈ ℝ)
2928recnd 10669 . . . 4 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) ∈ ℂ)
3024ex 415 . . . . . 6 (⊤ → (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ+))
3130ssrdv 3973 . . . . 5 (⊤ → (1[,)+∞) ⊆ ℝ+)
32 selberg2lem 26126 . . . . . 6 (𝑦 ∈ ℝ+ ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1)
3332a1i 11 . . . . 5 (⊤ → (𝑦 ∈ ℝ+ ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1))
3431, 33o1res2 14920 . . . 4 (⊤ → (𝑦 ∈ (1[,)+∞) ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1))
35 fzfid 13342 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
36 elfznn 12937 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
3736adantl 484 . . . . . . . 8 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
3837, 11syl 17 . . . . . . 7 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
3937nnrpd 12430 . . . . . . . 8 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
4039relogcld 25206 . . . . . . 7 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
4138, 40remulcld 10671 . . . . . 6 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
4235, 41fsumrecl 15091 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
43 chpcl 25701 . . . . . . 7 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
4443ad2antrl 726 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (ψ‘𝑥) ∈ ℝ)
45 simprl 769 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
4620a1i 11 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 1 ∈ ℝ+)
47 simprr 771 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
4845, 46, 47rpgecld 12471 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
4948relogcld 25206 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
5044, 49remulcld 10671 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ)
5142, 50readdcld 10670 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℝ)
5227adantr 483 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
5352recnd 10669 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℂ)
5424adantr 483 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℝ+)
5554rpcnd 12434 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℂ)
5654rpne0d 12437 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ≠ 0)
5753, 55, 56absdivd 14815 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / (abs‘𝑦)))
5817adantr 483 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℝ)
5954rpge0d 12436 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ 𝑦)
6058, 59absidd 14782 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘𝑦) = 𝑦)
6160oveq2d 7172 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / (abs‘𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦))
6257, 61eqtrd 2856 . . . . 5 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦))
6353abscld 14796 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ∈ ℝ)
6463, 54rerpdivcld 12463 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ∈ ℝ)
6542ad2ant2r 745 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
66 simprll 777 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑥 ∈ ℝ)
6766, 43syl 17 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑥) ∈ ℝ)
68 simprr 771 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 < 𝑥)
6958, 66, 68ltled 10788 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦𝑥)
7066, 54, 69rpgecld 12471 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑥 ∈ ℝ+)
7170relogcld 25206 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑥) ∈ ℝ)
7267, 71remulcld 10671 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ)
7365, 72readdcld 10670 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℝ)
7420a1i 11 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 1 ∈ ℝ+)
7553absge0d 14804 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
7623adantr 483 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 1 ≤ 𝑦)
7774, 54, 63, 75, 76lediv2ad 12454 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 1))
7863recnd 10669 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ∈ ℂ)
7978div1d 11408 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 1) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
8077, 79breqtrd 5092 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
8116adantr 483 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
8258, 18syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑦) ∈ ℝ)
8354relogcld 25206 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑦) ∈ ℝ)
8482, 83remulcld 10671 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
8581, 84readdcld 10670 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
8681recnd 10669 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
8726adantr 483 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
8887recnd 10669 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℂ)
8986, 88abs2dif2d 14818 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ ((abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) + (abs‘((ψ‘𝑦) · (log‘𝑦)))))
90 vmage0 25698 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 0 ≤ (Λ‘𝑚))
9110, 90syl 17 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ (Λ‘𝑚))
9210nnred 11653 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℝ)
9310nnge1d 11686 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 1 ≤ 𝑚)
9492, 93logge0d 25213 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ (log‘𝑚))
9512, 14, 91, 94mulge0d 11217 . . . . . . . . . . . 12 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ ((Λ‘𝑚) · (log‘𝑚)))
968, 15, 95fsumge0 15150 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
9796adantr 483 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
9881, 97absidd 14782 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
99 chpge0 25703 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
10058, 99syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (ψ‘𝑦))
10158, 76logge0d 25213 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (log‘𝑦))
10282, 83, 100, 101mulge0d 11217 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ ((ψ‘𝑦) · (log‘𝑦)))
10387, 102absidd 14782 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((ψ‘𝑦) · (log‘𝑦))) = ((ψ‘𝑦) · (log‘𝑦)))
10498, 103oveq12d 7174 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) + (abs‘((ψ‘𝑦) · (log‘𝑦)))) = (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))))
10589, 104breqtrd 5092 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))))
106 fzfid 13342 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
10736adantl 484 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
108107, 11syl 17 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
109107nnrpd 12430 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
110109relogcld 25206 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
111108, 110remulcld 10671 . . . . . . . . 9 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
112107, 90syl 17 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑚))
113107nnred 11653 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ)
114107nnge1d 11686 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑚)
115113, 114logge0d 25213 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑚))
116108, 110, 112, 115mulge0d 11217 . . . . . . . . 9 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑚) · (log‘𝑚)))
117 flword2 13184 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦𝑥) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)))
11858, 66, 69, 117syl3anc 1367 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)))
119 fzss2 12948 . . . . . . . . . 10 ((⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)) → (1...(⌊‘𝑦)) ⊆ (1...(⌊‘𝑥)))
120118, 119syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (1...(⌊‘𝑦)) ⊆ (1...(⌊‘𝑥)))
121106, 111, 116, 120fsumless 15151 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)))
122 chpwordi 25734 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦𝑥) → (ψ‘𝑦) ≤ (ψ‘𝑥))
12358, 66, 69, 122syl3anc 1367 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑦) ≤ (ψ‘𝑥))
12454, 70logled 25210 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (𝑦𝑥 ↔ (log‘𝑦) ≤ (log‘𝑥)))
12569, 124mpbid 234 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑦) ≤ (log‘𝑥))
12682, 67, 83, 71, 100, 101, 123, 125lemul12ad 11582 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ≤ ((ψ‘𝑥) · (log‘𝑥)))
12781, 84, 65, 72, 121, 126le2addd 11259 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
12863, 85, 73, 105, 127letrd 10797 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
12964, 63, 73, 80, 128letrd 10797 . . . . 5 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
13062, 129eqbrtrd 5088 . . . 4 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
1316, 7, 29, 34, 51, 130o1bddrp 14899 . . 3 (⊤ → ∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐)
132131mptru 1544 . 2 𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐
133 simpl 485 . . . 4 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → 𝑐 ∈ ℝ+)
134 simpr 487 . . . 4 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐)
135133, 134selberg3lem1 26133 . . 3 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
136135rexlimiva 3281 . 2 (∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
137132, 136ax-mp 5 1 (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wtru 1538  wcel 2114  wral 3138  wrex 3139  wss 3936   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  +∞cpnf 10672   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  cuz 12244  +crp 12390  (,)cioo 12739  [,)cico 12741  ...cfz 12893  cfl 13161  abscabs 14593  𝑂(1)co1 14843  Σcsu 15042  logclog 25138  Λcvma 25669  ψcchp 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-o1 14847  df-lo1 14848  df-sum 15043  df-ef 15421  df-e 15422  df-sin 15423  df-cos 15424  df-pi 15426  df-dvds 15608  df-gcd 15844  df-prm 16016  df-pc 16174  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140  df-cxp 25141  df-cht 25674  df-vma 25675  df-chp 25676  df-ppi 25677
This theorem is referenced by:  selberg3  26135  selberg4  26137
  Copyright terms: Public domain W3C validator