MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3lem2 Structured version   Visualization version   GIF version

Theorem selberg3lem2 27476
Description: Lemma for selberg3 27477. Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selberg3lem2 (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem selberg3lem2
Dummy variables 𝑚 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 11181 . . . . . . . 8 1 ∈ ℝ
2 elicopnf 13413 . . . . . . . 8 (1 ∈ ℝ → (𝑦 ∈ (1[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)))
31, 2ax-mp 5 . . . . . . 7 (𝑦 ∈ (1[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦))
43simplbi 497 . . . . . 6 (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ)
54ssriv 3953 . . . . 5 (1[,)+∞) ⊆ ℝ
65a1i 11 . . . 4 (⊤ → (1[,)+∞) ⊆ ℝ)
71a1i 11 . . . 4 (⊤ → 1 ∈ ℝ)
8 fzfid 13945 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (1...(⌊‘𝑦)) ∈ Fin)
9 elfznn 13521 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘𝑦)) → 𝑚 ∈ ℕ)
109adantl 481 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℕ)
11 vmacl 27035 . . . . . . . . . 10 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
1210, 11syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑚) ∈ ℝ)
1310nnrpd 13000 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℝ+)
1413relogcld 26539 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → (log‘𝑚) ∈ ℝ)
1512, 14remulcld 11211 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
168, 15fsumrecl 15707 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
174adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ)
18 chpcl 27041 . . . . . . . . 9 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
1917, 18syl 17 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (ψ‘𝑦) ∈ ℝ)
20 1rp 12962 . . . . . . . . . . 11 1 ∈ ℝ+
2120a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ+)
223simprbi 496 . . . . . . . . . . 11 (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦)
2322adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
2417, 21, 23rpgecld 13041 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ+)
2524relogcld 26539 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (log‘𝑦) ∈ ℝ)
2619, 25remulcld 11211 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
2716, 26resubcld 11613 . . . . . 6 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
2827, 24rerpdivcld 13033 . . . . 5 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) ∈ ℝ)
2928recnd 11209 . . . 4 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) ∈ ℂ)
3024ex 412 . . . . . 6 (⊤ → (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ+))
3130ssrdv 3955 . . . . 5 (⊤ → (1[,)+∞) ⊆ ℝ+)
32 selberg2lem 27468 . . . . . 6 (𝑦 ∈ ℝ+ ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1)
3332a1i 11 . . . . 5 (⊤ → (𝑦 ∈ ℝ+ ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1))
3431, 33o1res2 15536 . . . 4 (⊤ → (𝑦 ∈ (1[,)+∞) ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1))
35 fzfid 13945 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
36 elfznn 13521 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
3736adantl 481 . . . . . . . 8 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
3837, 11syl 17 . . . . . . 7 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
3937nnrpd 13000 . . . . . . . 8 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
4039relogcld 26539 . . . . . . 7 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
4138, 40remulcld 11211 . . . . . 6 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
4235, 41fsumrecl 15707 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
43 chpcl 27041 . . . . . . 7 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
4443ad2antrl 728 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (ψ‘𝑥) ∈ ℝ)
45 simprl 770 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
4620a1i 11 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 1 ∈ ℝ+)
47 simprr 772 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
4845, 46, 47rpgecld 13041 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
4948relogcld 26539 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
5044, 49remulcld 11211 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ)
5142, 50readdcld 11210 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℝ)
5227adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
5352recnd 11209 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℂ)
5424adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℝ+)
5554rpcnd 13004 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℂ)
5654rpne0d 13007 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ≠ 0)
5753, 55, 56absdivd 15431 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / (abs‘𝑦)))
5817adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℝ)
5954rpge0d 13006 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ 𝑦)
6058, 59absidd 15396 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘𝑦) = 𝑦)
6160oveq2d 7406 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / (abs‘𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦))
6257, 61eqtrd 2765 . . . . 5 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦))
6353abscld 15412 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ∈ ℝ)
6463, 54rerpdivcld 13033 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ∈ ℝ)
6542ad2ant2r 747 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
66 simprll 778 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑥 ∈ ℝ)
6766, 43syl 17 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑥) ∈ ℝ)
68 simprr 772 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 < 𝑥)
6958, 66, 68ltled 11329 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦𝑥)
7066, 54, 69rpgecld 13041 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑥 ∈ ℝ+)
7170relogcld 26539 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑥) ∈ ℝ)
7267, 71remulcld 11211 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ)
7365, 72readdcld 11210 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℝ)
7420a1i 11 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 1 ∈ ℝ+)
7553absge0d 15420 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
7623adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 1 ≤ 𝑦)
7774, 54, 63, 75, 76lediv2ad 13024 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 1))
7863recnd 11209 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ∈ ℂ)
7978div1d 11957 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 1) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
8077, 79breqtrd 5136 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
8116adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
8258, 18syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑦) ∈ ℝ)
8354relogcld 26539 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑦) ∈ ℝ)
8482, 83remulcld 11211 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
8581, 84readdcld 11210 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
8681recnd 11209 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
8726adantr 480 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
8887recnd 11209 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℂ)
8986, 88abs2dif2d 15434 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ ((abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) + (abs‘((ψ‘𝑦) · (log‘𝑦)))))
90 vmage0 27038 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 0 ≤ (Λ‘𝑚))
9110, 90syl 17 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ (Λ‘𝑚))
9210nnred 12208 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℝ)
9310nnge1d 12241 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 1 ≤ 𝑚)
9492, 93logge0d 26546 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ (log‘𝑚))
9512, 14, 91, 94mulge0d 11762 . . . . . . . . . . . 12 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ ((Λ‘𝑚) · (log‘𝑚)))
968, 15, 95fsumge0 15768 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
9796adantr 480 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
9881, 97absidd 15396 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
99 chpge0 27043 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
10058, 99syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (ψ‘𝑦))
10158, 76logge0d 26546 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (log‘𝑦))
10282, 83, 100, 101mulge0d 11762 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ ((ψ‘𝑦) · (log‘𝑦)))
10387, 102absidd 15396 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((ψ‘𝑦) · (log‘𝑦))) = ((ψ‘𝑦) · (log‘𝑦)))
10498, 103oveq12d 7408 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) + (abs‘((ψ‘𝑦) · (log‘𝑦)))) = (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))))
10589, 104breqtrd 5136 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))))
106 fzfid 13945 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
10736adantl 481 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
108107, 11syl 17 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
109107nnrpd 13000 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
110109relogcld 26539 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
111108, 110remulcld 11211 . . . . . . . . 9 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
112107, 90syl 17 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑚))
113107nnred 12208 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ)
114107nnge1d 12241 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑚)
115113, 114logge0d 26546 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑚))
116108, 110, 112, 115mulge0d 11762 . . . . . . . . 9 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑚) · (log‘𝑚)))
117 flword2 13782 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦𝑥) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)))
11858, 66, 69, 117syl3anc 1373 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)))
119 fzss2 13532 . . . . . . . . . 10 ((⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)) → (1...(⌊‘𝑦)) ⊆ (1...(⌊‘𝑥)))
120118, 119syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (1...(⌊‘𝑦)) ⊆ (1...(⌊‘𝑥)))
121106, 111, 116, 120fsumless 15769 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)))
122 chpwordi 27074 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦𝑥) → (ψ‘𝑦) ≤ (ψ‘𝑥))
12358, 66, 69, 122syl3anc 1373 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑦) ≤ (ψ‘𝑥))
12454, 70logled 26543 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (𝑦𝑥 ↔ (log‘𝑦) ≤ (log‘𝑥)))
12569, 124mpbid 232 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑦) ≤ (log‘𝑥))
12682, 67, 83, 71, 100, 101, 123, 125lemul12ad 12132 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ≤ ((ψ‘𝑥) · (log‘𝑥)))
12781, 84, 65, 72, 121, 126le2addd 11804 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
12863, 85, 73, 105, 127letrd 11338 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
12964, 63, 73, 80, 128letrd 11338 . . . . 5 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
13062, 129eqbrtrd 5132 . . . 4 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
1316, 7, 29, 34, 51, 130o1bddrp 15515 . . 3 (⊤ → ∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐)
132131mptru 1547 . 2 𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐
133 simpl 482 . . . 4 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → 𝑐 ∈ ℝ+)
134 simpr 484 . . . 4 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐)
135133, 134selberg3lem1 27475 . . 3 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
136135rexlimiva 3127 . 2 (∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
137132, 136ax-mp 5 1 (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wtru 1541  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  cuz 12800  +crp 12958  (,)cioo 13313  [,)cico 13315  ...cfz 13475  cfl 13759  abscabs 15207  𝑂(1)co1 15459  Σcsu 15659  logclog 26470  Λcvma 27009  ψcchp 27010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-o1 15463  df-lo1 15464  df-sum 15660  df-ef 16040  df-e 16041  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473  df-cht 27014  df-vma 27015  df-chp 27016  df-ppi 27017
This theorem is referenced by:  selberg3  27477  selberg4  27479
  Copyright terms: Public domain W3C validator