MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3lem2 Structured version   Visualization version   GIF version

Theorem selberg3lem2 26611
Description: Lemma for selberg3 26612. Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selberg3lem2 (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem selberg3lem2
Dummy variables 𝑚 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 10906 . . . . . . . 8 1 ∈ ℝ
2 elicopnf 13106 . . . . . . . 8 (1 ∈ ℝ → (𝑦 ∈ (1[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)))
31, 2ax-mp 5 . . . . . . 7 (𝑦 ∈ (1[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦))
43simplbi 497 . . . . . 6 (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ)
54ssriv 3921 . . . . 5 (1[,)+∞) ⊆ ℝ
65a1i 11 . . . 4 (⊤ → (1[,)+∞) ⊆ ℝ)
71a1i 11 . . . 4 (⊤ → 1 ∈ ℝ)
8 fzfid 13621 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (1...(⌊‘𝑦)) ∈ Fin)
9 elfznn 13214 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘𝑦)) → 𝑚 ∈ ℕ)
109adantl 481 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℕ)
11 vmacl 26172 . . . . . . . . . 10 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
1210, 11syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑚) ∈ ℝ)
1310nnrpd 12699 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℝ+)
1413relogcld 25683 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → (log‘𝑚) ∈ ℝ)
1512, 14remulcld 10936 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
168, 15fsumrecl 15374 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
174adantl 481 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ)
18 chpcl 26178 . . . . . . . . 9 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
1917, 18syl 17 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (ψ‘𝑦) ∈ ℝ)
20 1rp 12663 . . . . . . . . . . 11 1 ∈ ℝ+
2120a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ+)
223simprbi 496 . . . . . . . . . . 11 (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦)
2322adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
2417, 21, 23rpgecld 12740 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ+)
2524relogcld 25683 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (log‘𝑦) ∈ ℝ)
2619, 25remulcld 10936 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
2716, 26resubcld 11333 . . . . . 6 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
2827, 24rerpdivcld 12732 . . . . 5 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) ∈ ℝ)
2928recnd 10934 . . . 4 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) ∈ ℂ)
3024ex 412 . . . . . 6 (⊤ → (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ+))
3130ssrdv 3923 . . . . 5 (⊤ → (1[,)+∞) ⊆ ℝ+)
32 selberg2lem 26603 . . . . . 6 (𝑦 ∈ ℝ+ ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1)
3332a1i 11 . . . . 5 (⊤ → (𝑦 ∈ ℝ+ ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1))
3431, 33o1res2 15200 . . . 4 (⊤ → (𝑦 ∈ (1[,)+∞) ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1))
35 fzfid 13621 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
36 elfznn 13214 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
3736adantl 481 . . . . . . . 8 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
3837, 11syl 17 . . . . . . 7 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
3937nnrpd 12699 . . . . . . . 8 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
4039relogcld 25683 . . . . . . 7 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
4138, 40remulcld 10936 . . . . . 6 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
4235, 41fsumrecl 15374 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
43 chpcl 26178 . . . . . . 7 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
4443ad2antrl 724 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (ψ‘𝑥) ∈ ℝ)
45 simprl 767 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
4620a1i 11 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 1 ∈ ℝ+)
47 simprr 769 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
4845, 46, 47rpgecld 12740 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
4948relogcld 25683 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
5044, 49remulcld 10936 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ)
5142, 50readdcld 10935 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℝ)
5227adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
5352recnd 10934 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℂ)
5424adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℝ+)
5554rpcnd 12703 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℂ)
5654rpne0d 12706 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ≠ 0)
5753, 55, 56absdivd 15095 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / (abs‘𝑦)))
5817adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℝ)
5954rpge0d 12705 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ 𝑦)
6058, 59absidd 15062 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘𝑦) = 𝑦)
6160oveq2d 7271 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / (abs‘𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦))
6257, 61eqtrd 2778 . . . . 5 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦))
6353abscld 15076 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ∈ ℝ)
6463, 54rerpdivcld 12732 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ∈ ℝ)
6542ad2ant2r 743 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
66 simprll 775 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑥 ∈ ℝ)
6766, 43syl 17 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑥) ∈ ℝ)
68 simprr 769 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 < 𝑥)
6958, 66, 68ltled 11053 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦𝑥)
7066, 54, 69rpgecld 12740 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑥 ∈ ℝ+)
7170relogcld 25683 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑥) ∈ ℝ)
7267, 71remulcld 10936 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ)
7365, 72readdcld 10935 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℝ)
7420a1i 11 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 1 ∈ ℝ+)
7553absge0d 15084 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
7623adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 1 ≤ 𝑦)
7774, 54, 63, 75, 76lediv2ad 12723 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 1))
7863recnd 10934 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ∈ ℂ)
7978div1d 11673 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 1) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
8077, 79breqtrd 5096 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
8116adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
8258, 18syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑦) ∈ ℝ)
8354relogcld 25683 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑦) ∈ ℝ)
8482, 83remulcld 10936 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
8581, 84readdcld 10935 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
8681recnd 10934 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
8726adantr 480 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
8887recnd 10934 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℂ)
8986, 88abs2dif2d 15098 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ ((abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) + (abs‘((ψ‘𝑦) · (log‘𝑦)))))
90 vmage0 26175 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 0 ≤ (Λ‘𝑚))
9110, 90syl 17 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ (Λ‘𝑚))
9210nnred 11918 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℝ)
9310nnge1d 11951 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 1 ≤ 𝑚)
9492, 93logge0d 25690 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ (log‘𝑚))
9512, 14, 91, 94mulge0d 11482 . . . . . . . . . . . 12 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ ((Λ‘𝑚) · (log‘𝑚)))
968, 15, 95fsumge0 15435 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
9796adantr 480 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
9881, 97absidd 15062 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
99 chpge0 26180 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
10058, 99syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (ψ‘𝑦))
10158, 76logge0d 25690 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (log‘𝑦))
10282, 83, 100, 101mulge0d 11482 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ ((ψ‘𝑦) · (log‘𝑦)))
10387, 102absidd 15062 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((ψ‘𝑦) · (log‘𝑦))) = ((ψ‘𝑦) · (log‘𝑦)))
10498, 103oveq12d 7273 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) + (abs‘((ψ‘𝑦) · (log‘𝑦)))) = (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))))
10589, 104breqtrd 5096 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))))
106 fzfid 13621 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
10736adantl 481 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
108107, 11syl 17 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
109107nnrpd 12699 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
110109relogcld 25683 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
111108, 110remulcld 10936 . . . . . . . . 9 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
112107, 90syl 17 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑚))
113107nnred 11918 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ)
114107nnge1d 11951 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑚)
115113, 114logge0d 25690 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑚))
116108, 110, 112, 115mulge0d 11482 . . . . . . . . 9 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑚) · (log‘𝑚)))
117 flword2 13461 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦𝑥) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)))
11858, 66, 69, 117syl3anc 1369 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)))
119 fzss2 13225 . . . . . . . . . 10 ((⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)) → (1...(⌊‘𝑦)) ⊆ (1...(⌊‘𝑥)))
120118, 119syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (1...(⌊‘𝑦)) ⊆ (1...(⌊‘𝑥)))
121106, 111, 116, 120fsumless 15436 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)))
122 chpwordi 26211 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦𝑥) → (ψ‘𝑦) ≤ (ψ‘𝑥))
12358, 66, 69, 122syl3anc 1369 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑦) ≤ (ψ‘𝑥))
12454, 70logled 25687 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (𝑦𝑥 ↔ (log‘𝑦) ≤ (log‘𝑥)))
12569, 124mpbid 231 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑦) ≤ (log‘𝑥))
12682, 67, 83, 71, 100, 101, 123, 125lemul12ad 11847 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ≤ ((ψ‘𝑥) · (log‘𝑥)))
12781, 84, 65, 72, 121, 126le2addd 11524 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
12863, 85, 73, 105, 127letrd 11062 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
12964, 63, 73, 80, 128letrd 11062 . . . . 5 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
13062, 129eqbrtrd 5092 . . . 4 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
1316, 7, 29, 34, 51, 130o1bddrp 15179 . . 3 (⊤ → ∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐)
132131mptru 1546 . 2 𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐
133 simpl 482 . . . 4 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → 𝑐 ∈ ℝ+)
134 simpr 484 . . . 4 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐)
135133, 134selberg3lem1 26610 . . 3 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
136135rexlimiva 3209 . 2 (∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
137132, 136ax-mp 5 1 (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wtru 1540  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  cuz 12511  +crp 12659  (,)cioo 13008  [,)cico 13010  ...cfz 13168  cfl 13438  abscabs 14873  𝑂(1)co1 15123  Σcsu 15325  logclog 25615  Λcvma 26146  ψcchp 26147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-o1 15127  df-lo1 15128  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618  df-cht 26151  df-vma 26152  df-chp 26153  df-ppi 26154
This theorem is referenced by:  selberg3  26612  selberg4  26614
  Copyright terms: Public domain W3C validator