MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberg3lem2 Structured version   Visualization version   GIF version

Theorem selberg3lem2 26704
Description: Lemma for selberg3 26705. Equation 10.4.21 of [Shapiro], p. 422. (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selberg3lem2 (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1)
Distinct variable group:   𝑥,𝑛

Proof of Theorem selberg3lem2
Dummy variables 𝑚 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 10976 . . . . . . . 8 1 ∈ ℝ
2 elicopnf 13176 . . . . . . . 8 (1 ∈ ℝ → (𝑦 ∈ (1[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)))
31, 2ax-mp 5 . . . . . . 7 (𝑦 ∈ (1[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦))
43simplbi 498 . . . . . 6 (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ)
54ssriv 3930 . . . . 5 (1[,)+∞) ⊆ ℝ
65a1i 11 . . . 4 (⊤ → (1[,)+∞) ⊆ ℝ)
71a1i 11 . . . 4 (⊤ → 1 ∈ ℝ)
8 fzfid 13691 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (1...(⌊‘𝑦)) ∈ Fin)
9 elfznn 13284 . . . . . . . . . . 11 (𝑚 ∈ (1...(⌊‘𝑦)) → 𝑚 ∈ ℕ)
109adantl 482 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℕ)
11 vmacl 26265 . . . . . . . . . 10 (𝑚 ∈ ℕ → (Λ‘𝑚) ∈ ℝ)
1210, 11syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑚) ∈ ℝ)
1310nnrpd 12769 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℝ+)
1413relogcld 25776 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → (log‘𝑚) ∈ ℝ)
1512, 14remulcld 11006 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
168, 15fsumrecl 15444 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
174adantl 482 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ)
18 chpcl 26271 . . . . . . . . 9 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
1917, 18syl 17 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (ψ‘𝑦) ∈ ℝ)
20 1rp 12733 . . . . . . . . . . 11 1 ∈ ℝ+
2120a1i 11 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ+)
223simprbi 497 . . . . . . . . . . 11 (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦)
2322adantl 482 . . . . . . . . . 10 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
2417, 21, 23rpgecld 12810 . . . . . . . . 9 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ+)
2524relogcld 25776 . . . . . . . 8 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (log‘𝑦) ∈ ℝ)
2619, 25remulcld 11006 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
2716, 26resubcld 11403 . . . . . 6 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
2827, 24rerpdivcld 12802 . . . . 5 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) ∈ ℝ)
2928recnd 11004 . . . 4 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦) ∈ ℂ)
3024ex 413 . . . . . 6 (⊤ → (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ+))
3130ssrdv 3932 . . . . 5 (⊤ → (1[,)+∞) ⊆ ℝ+)
32 selberg2lem 26696 . . . . . 6 (𝑦 ∈ ℝ+ ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1)
3332a1i 11 . . . . 5 (⊤ → (𝑦 ∈ ℝ+ ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1))
3431, 33o1res2 15270 . . . 4 (⊤ → (𝑦 ∈ (1[,)+∞) ↦ ((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ∈ 𝑂(1))
35 fzfid 13691 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
36 elfznn 13284 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘𝑥)) → 𝑚 ∈ ℕ)
3736adantl 482 . . . . . . . 8 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
3837, 11syl 17 . . . . . . 7 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
3937nnrpd 12769 . . . . . . . 8 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
4039relogcld 25776 . . . . . . 7 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
4138, 40remulcld 11006 . . . . . 6 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
4235, 41fsumrecl 15444 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
43 chpcl 26271 . . . . . . 7 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
4443ad2antrl 725 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (ψ‘𝑥) ∈ ℝ)
45 simprl 768 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
4620a1i 11 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 1 ∈ ℝ+)
47 simprr 770 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
4845, 46, 47rpgecld 12810 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
4948relogcld 25776 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
5044, 49remulcld 11006 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ)
5142, 50readdcld 11005 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℝ)
5227adantr 481 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
5352recnd 11004 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) ∈ ℂ)
5424adantr 481 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℝ+)
5554rpcnd 12773 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℂ)
5654rpne0d 12776 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ≠ 0)
5753, 55, 56absdivd 15165 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / (abs‘𝑦)))
5817adantr 481 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 ∈ ℝ)
5954rpge0d 12775 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ 𝑦)
6058, 59absidd 15132 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘𝑦) = 𝑦)
6160oveq2d 7287 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / (abs‘𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦))
6257, 61eqtrd 2780 . . . . 5 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) = ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦))
6353abscld 15146 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ∈ ℝ)
6463, 54rerpdivcld 12802 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ∈ ℝ)
6542ad2ant2r 744 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
66 simprll 776 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑥 ∈ ℝ)
6766, 43syl 17 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑥) ∈ ℝ)
68 simprr 770 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦 < 𝑥)
6958, 66, 68ltled 11123 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑦𝑥)
7066, 54, 69rpgecld 12810 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 𝑥 ∈ ℝ+)
7170relogcld 25776 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑥) ∈ ℝ)
7267, 71remulcld 11006 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑥) · (log‘𝑥)) ∈ ℝ)
7365, 72readdcld 11005 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))) ∈ ℝ)
7420a1i 11 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 1 ∈ ℝ+)
7553absge0d 15154 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
7623adantr 481 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 1 ≤ 𝑦)
7774, 54, 63, 75, 76lediv2ad 12793 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 1))
7863recnd 11004 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ∈ ℂ)
7978div1d 11743 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 1) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
8077, 79breqtrd 5105 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))))
8116adantr 481 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
8258, 18syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑦) ∈ ℝ)
8354relogcld 25776 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑦) ∈ ℝ)
8482, 83remulcld 11006 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
8581, 84readdcld 11005 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))) ∈ ℝ)
8681recnd 11004 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ∈ ℂ)
8726adantr 481 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℝ)
8887recnd 11004 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ∈ ℂ)
8986, 88abs2dif2d 15168 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ ((abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) + (abs‘((ψ‘𝑦) · (log‘𝑦)))))
90 vmage0 26268 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 0 ≤ (Λ‘𝑚))
9110, 90syl 17 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ (Λ‘𝑚))
9210nnred 11988 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 𝑚 ∈ ℝ)
9310nnge1d 12021 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 1 ≤ 𝑚)
9492, 93logge0d 25783 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ (log‘𝑚))
9512, 14, 91, 94mulge0d 11552 . . . . . . . . . . . 12 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑦))) → 0 ≤ ((Λ‘𝑚) · (log‘𝑚)))
968, 15, 95fsumge0 15505 . . . . . . . . . . 11 ((⊤ ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
9796adantr 481 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
9881, 97absidd 15132 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) = Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)))
99 chpge0 26273 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
10058, 99syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (ψ‘𝑦))
10158, 76logge0d 25783 . . . . . . . . . . 11 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ (log‘𝑦))
10282, 83, 100, 101mulge0d 11552 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → 0 ≤ ((ψ‘𝑦) · (log‘𝑦)))
10387, 102absidd 15132 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((ψ‘𝑦) · (log‘𝑦))) = ((ψ‘𝑦) · (log‘𝑦)))
10498, 103oveq12d 7289 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚))) + (abs‘((ψ‘𝑦) · (log‘𝑦)))) = (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))))
10589, 104breqtrd 5105 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))))
106 fzfid 13691 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
10736adantl 482 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ)
108107, 11syl 17 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈ ℝ)
109107nnrpd 12769 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+)
110109relogcld 25776 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (log‘𝑚) ∈ ℝ)
111108, 110remulcld 11006 . . . . . . . . 9 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑚) · (log‘𝑚)) ∈ ℝ)
112107, 90syl 17 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑚))
113107nnred 11988 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ)
114107nnge1d 12021 . . . . . . . . . . 11 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑚)
115113, 114logge0d 25783 . . . . . . . . . 10 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑚))
116108, 110, 112, 115mulge0d 11552 . . . . . . . . 9 ((((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑚) · (log‘𝑚)))
117 flword2 13531 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦𝑥) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)))
11858, 66, 69, 117syl3anc 1370 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)))
119 fzss2 13295 . . . . . . . . . 10 ((⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑦)) → (1...(⌊‘𝑦)) ⊆ (1...(⌊‘𝑥)))
120118, 119syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (1...(⌊‘𝑦)) ⊆ (1...(⌊‘𝑥)))
121106, 111, 116, 120fsumless 15506 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) ≤ Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)))
122 chpwordi 26304 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑦𝑥) → (ψ‘𝑦) ≤ (ψ‘𝑥))
12358, 66, 69, 122syl3anc 1370 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (ψ‘𝑦) ≤ (ψ‘𝑥))
12454, 70logled 25780 . . . . . . . . . 10 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (𝑦𝑥 ↔ (log‘𝑦) ≤ (log‘𝑥)))
12569, 124mpbid 231 . . . . . . . . 9 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (log‘𝑦) ≤ (log‘𝑥))
12682, 67, 83, 71, 100, 101, 123, 125lemul12ad 11917 . . . . . . . 8 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((ψ‘𝑦) · (log‘𝑦)) ≤ ((ψ‘𝑥) · (log‘𝑥)))
12781, 84, 65, 72, 121, 126le2addd 11594 . . . . . . 7 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑦) · (log‘𝑦))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
12863, 85, 73, 105, 127letrd 11132 . . . . . 6 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
12964, 63, 73, 80, 128letrd 11132 . . . . 5 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦)))) / 𝑦) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
13062, 129eqbrtrd 5101 . . . 4 (((⊤ ∧ 𝑦 ∈ (1[,)+∞)) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑦 < 𝑥)) → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · (log‘𝑚)) + ((ψ‘𝑥) · (log‘𝑥))))
1316, 7, 29, 34, 51, 130o1bddrp 15249 . . 3 (⊤ → ∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐)
132131mptru 1549 . 2 𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐
133 simpl 483 . . . 4 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → 𝑐 ∈ ℝ+)
134 simpr 485 . . . 4 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐)
135133, 134selberg3lem1 26703 . . 3 ((𝑐 ∈ ℝ+ ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐) → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
136135rexlimiva 3212 . 2 (∃𝑐 ∈ ℝ+𝑦 ∈ (1[,)+∞)(abs‘((Σ𝑚 ∈ (1...(⌊‘𝑦))((Λ‘𝑚) · (log‘𝑚)) − ((ψ‘𝑦) · (log‘𝑦))) / 𝑦)) ≤ 𝑐 → (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1))
137132, 136ax-mp 5 1 (𝑥 ∈ (1(,)+∞) ↦ ((((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛))) · (log‘𝑛))) − Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · (ψ‘(𝑥 / 𝑛)))) / 𝑥)) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wtru 1543  wcel 2110  wral 3066  wrex 3067  wss 3892   class class class wbr 5079  cmpt 5162  cfv 6432  (class class class)co 7271  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877  +∞cpnf 11007   < clt 11010  cle 11011  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  cuz 12581  +crp 12729  (,)cioo 13078  [,)cico 13080  ...cfz 13238  cfl 13508  abscabs 14943  𝑂(1)co1 15193  Σcsu 15395  logclog 25708  Λcvma 26239  ψcchp 26240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ioc 13083  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-o1 15197  df-lo1 15198  df-sum 15396  df-ef 15775  df-e 15776  df-sin 15777  df-cos 15778  df-pi 15780  df-dvds 15962  df-gcd 16200  df-prm 16375  df-pc 16536  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cn 22376  df-cnp 22377  df-haus 22464  df-cmp 22536  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cncf 24039  df-limc 25028  df-dv 25029  df-log 25710  df-cxp 25711  df-cht 26244  df-vma 26245  df-chp 26246  df-ppi 26247
This theorem is referenced by:  selberg3  26705  selberg4  26707
  Copyright terms: Public domain W3C validator