MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem6a Structured version   Visualization version   GIF version

Theorem pntrlog2bndlem6a 27469
Description: Lemma for pntrlog2bndlem6 27470. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
pntsval.1 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))))
pntrlog2bnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntrlog2bnd.t 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0))
pntrlog2bndlem5.1 (𝜑𝐵 ∈ ℝ+)
pntrlog2bndlem5.2 (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅𝑦) / 𝑦)) ≤ 𝐵)
pntrlog2bndlem6.1 (𝜑𝐴 ∈ ℝ)
pntrlog2bndlem6.2 (𝜑 → 1 ≤ 𝐴)
Assertion
Ref Expression
pntrlog2bndlem6a ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))))
Distinct variable groups:   𝑖,𝑎,𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥   𝑥,𝑆,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑖,𝑎)   𝐵(𝑖,𝑎)   𝑅(𝑖,𝑎)   𝑆(𝑖,𝑎)   𝑇(𝑥,𝑦,𝑖,𝑎)

Proof of Theorem pntrlog2bndlem6a
StepHypRef Expression
1 elioore 13312 . . . . . . . 8 (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ)
21adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ)
3 1rp 12931 . . . . . . . 8 1 ∈ ℝ+
43a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+)
54rpred 12971 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ)
6 eliooord 13342 . . . . . . . . . 10 (𝑥 ∈ (1(,)+∞) → (1 < 𝑥𝑥 < +∞))
76adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (1(,)+∞)) → (1 < 𝑥𝑥 < +∞))
87simpld 494 . . . . . . . 8 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 < 𝑥)
95, 2, 8ltled 11298 . . . . . . 7 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥)
102, 4, 9rpgecld 13010 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+)
11 pntrlog2bndlem6.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
123a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
13 pntrlog2bndlem6.2 . . . . . . . 8 (𝜑 → 1 ≤ 𝐴)
1411, 12, 13rpgecld 13010 . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
1514adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+)
1610, 15rpdivcld 12988 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ+)
1716rprege0d 12978 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → ((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴)))
18 flge0nn0 13758 . . . 4 (((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴)) → (⌊‘(𝑥 / 𝐴)) ∈ ℕ0)
19 nn0p1nn 12457 . . . 4 ((⌊‘(𝑥 / 𝐴)) ∈ ℕ0 → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ)
2017, 18, 193syl 18 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ)
21 nnuz 12812 . . 3 ℕ = (ℤ‘1)
2220, 21eleqtrdi 2838 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ‘1))
2316rpred 12971 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ)
2410rpge0d 12975 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥)
2513adantr 480 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝐴)
264, 15, 2, 24, 25lediv2ad 12993 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ (𝑥 / 1))
272recnd 11178 . . . . 5 ((𝜑𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ)
2827div1d 11926 . . . 4 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥)
2926, 28breqtrd 5128 . . 3 ((𝜑𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ 𝑥)
30 flword2 13751 . . 3 (((𝑥 / 𝐴) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 / 𝐴) ≤ 𝑥) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘(𝑥 / 𝐴))))
3123, 2, 29, 30syl3anc 1373 . 2 ((𝜑𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘(𝑥 / 𝐴))))
32 fzsplit2 13486 . 2 ((((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ‘1) ∧ (⌊‘𝑥) ∈ (ℤ‘(⌊‘(𝑥 / 𝐴)))) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))))
3322, 31, 32syl2anc 584 1 ((𝜑𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cun 3909  ifcif 4484   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  cuz 12769  +crp 12927  (,)cioo 13282  ...cfz 13444  cfl 13728  abscabs 15176  Σcsu 15628  logclog 26439  Λcvma 26978  ψcchp 26979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ioo 13286  df-fz 13445  df-fl 13730
This theorem is referenced by:  pntrlog2bndlem6  27470
  Copyright terms: Public domain W3C validator