![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pntrlog2bndlem6a | Structured version Visualization version GIF version |
Description: Lemma for pntrlog2bndlem6 27642. (Contributed by Mario Carneiro, 7-Jun-2016.) |
Ref | Expression |
---|---|
pntsval.1 | ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) |
pntrlog2bnd.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
pntrlog2bnd.t | ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) |
pntrlog2bndlem5.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
pntrlog2bndlem5.2 | ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) |
pntrlog2bndlem6.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
pntrlog2bndlem6.2 | ⊢ (𝜑 → 1 ≤ 𝐴) |
Ref | Expression |
---|---|
pntrlog2bndlem6a | ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elioore 13414 | . . . . . . . 8 ⊢ (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ) | |
2 | 1 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ) |
3 | 1rp 13036 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
4 | 3 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+) |
5 | 4 | rpred 13075 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ) |
6 | eliooord 13443 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1(,)+∞) → (1 < 𝑥 ∧ 𝑥 < +∞)) | |
7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) |
8 | 7 | simpld 494 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥) |
9 | 5, 2, 8 | ltled 11407 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥) |
10 | 2, 4, 9 | rpgecld 13114 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+) |
11 | pntrlog2bndlem6.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
12 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ+) |
13 | pntrlog2bndlem6.2 | . . . . . . . 8 ⊢ (𝜑 → 1 ≤ 𝐴) | |
14 | 11, 12, 13 | rpgecld 13114 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+) |
16 | 10, 15 | rpdivcld 13092 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ+) |
17 | 16 | rprege0d 13082 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴))) |
18 | flge0nn0 13857 | . . . 4 ⊢ (((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴)) → (⌊‘(𝑥 / 𝐴)) ∈ ℕ0) | |
19 | nn0p1nn 12563 | . . . 4 ⊢ ((⌊‘(𝑥 / 𝐴)) ∈ ℕ0 → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ) | |
20 | 17, 18, 19 | 3syl 18 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ) |
21 | nnuz 12919 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
22 | 20, 21 | eleqtrdi 2849 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ≥‘1)) |
23 | 16 | rpred 13075 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ) |
24 | 10 | rpge0d 13079 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥) |
25 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝐴) |
26 | 4, 15, 2, 24, 25 | lediv2ad 13097 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ (𝑥 / 1)) |
27 | 2 | recnd 11287 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ) |
28 | 27 | div1d 12033 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥) |
29 | 26, 28 | breqtrd 5174 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ 𝑥) |
30 | flword2 13850 | . . 3 ⊢ (((𝑥 / 𝐴) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 / 𝐴) ≤ 𝑥) → (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) | |
31 | 23, 2, 29, 30 | syl3anc 1370 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) |
32 | fzsplit2 13586 | . 2 ⊢ ((((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ≥‘1) ∧ (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) | |
33 | 22, 31, 32 | syl2anc 584 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∪ cun 3961 ifcif 4531 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 +∞cpnf 11290 < clt 11293 ≤ cle 11294 − cmin 11490 / cdiv 11918 ℕcn 12264 ℕ0cn0 12524 ℤ≥cuz 12876 ℝ+crp 13032 (,)cioo 13384 ...cfz 13544 ⌊cfl 13827 abscabs 15270 Σcsu 15719 logclog 26611 Λcvma 27150 ψcchp 27151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-ioo 13388 df-fz 13545 df-fl 13829 |
This theorem is referenced by: pntrlog2bndlem6 27642 |
Copyright terms: Public domain | W3C validator |