| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntrlog2bndlem6a | Structured version Visualization version GIF version | ||
| Description: Lemma for pntrlog2bndlem6 27494. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| pntsval.1 | ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) |
| pntrlog2bnd.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntrlog2bnd.t | ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) |
| pntrlog2bndlem5.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntrlog2bndlem5.2 | ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) |
| pntrlog2bndlem6.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| pntrlog2bndlem6.2 | ⊢ (𝜑 → 1 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| pntrlog2bndlem6a | ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore 13336 | . . . . . . . 8 ⊢ (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ) | |
| 2 | 1 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ) |
| 3 | 1rp 12955 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
| 4 | 3 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+) |
| 5 | 4 | rpred 12995 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ) |
| 6 | eliooord 13366 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1(,)+∞) → (1 < 𝑥 ∧ 𝑥 < +∞)) | |
| 7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) |
| 8 | 7 | simpld 494 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥) |
| 9 | 5, 2, 8 | ltled 11322 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥) |
| 10 | 2, 4, 9 | rpgecld 13034 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+) |
| 11 | pntrlog2bndlem6.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 12 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ+) |
| 13 | pntrlog2bndlem6.2 | . . . . . . . 8 ⊢ (𝜑 → 1 ≤ 𝐴) | |
| 14 | 11, 12, 13 | rpgecld 13034 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+) |
| 16 | 10, 15 | rpdivcld 13012 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ+) |
| 17 | 16 | rprege0d 13002 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴))) |
| 18 | flge0nn0 13782 | . . . 4 ⊢ (((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴)) → (⌊‘(𝑥 / 𝐴)) ∈ ℕ0) | |
| 19 | nn0p1nn 12481 | . . . 4 ⊢ ((⌊‘(𝑥 / 𝐴)) ∈ ℕ0 → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ) | |
| 20 | 17, 18, 19 | 3syl 18 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ) |
| 21 | nnuz 12836 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 22 | 20, 21 | eleqtrdi 2838 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ≥‘1)) |
| 23 | 16 | rpred 12995 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ) |
| 24 | 10 | rpge0d 12999 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥) |
| 25 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝐴) |
| 26 | 4, 15, 2, 24, 25 | lediv2ad 13017 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ (𝑥 / 1)) |
| 27 | 2 | recnd 11202 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ) |
| 28 | 27 | div1d 11950 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥) |
| 29 | 26, 28 | breqtrd 5133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ 𝑥) |
| 30 | flword2 13775 | . . 3 ⊢ (((𝑥 / 𝐴) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 / 𝐴) ≤ 𝑥) → (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) | |
| 31 | 23, 2, 29, 30 | syl3anc 1373 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) |
| 32 | fzsplit2 13510 | . 2 ⊢ ((((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ≥‘1) ∧ (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) | |
| 33 | 22, 31, 32 | syl2anc 584 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cun 3912 ifcif 4488 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 +∞cpnf 11205 < clt 11208 ≤ cle 11209 − cmin 11405 / cdiv 11835 ℕcn 12186 ℕ0cn0 12442 ℤ≥cuz 12793 ℝ+crp 12951 (,)cioo 13306 ...cfz 13468 ⌊cfl 13752 abscabs 15200 Σcsu 15652 logclog 26463 Λcvma 27002 ψcchp 27003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ioo 13310 df-fz 13469 df-fl 13754 |
| This theorem is referenced by: pntrlog2bndlem6 27494 |
| Copyright terms: Public domain | W3C validator |