| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntrlog2bndlem6a | Structured version Visualization version GIF version | ||
| Description: Lemma for pntrlog2bndlem6 27627. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| pntsval.1 | ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) |
| pntrlog2bnd.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntrlog2bnd.t | ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) |
| pntrlog2bndlem5.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntrlog2bndlem5.2 | ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) |
| pntrlog2bndlem6.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| pntrlog2bndlem6.2 | ⊢ (𝜑 → 1 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| pntrlog2bndlem6a | ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore 13417 | . . . . . . . 8 ⊢ (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ) | |
| 2 | 1 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ) |
| 3 | 1rp 13038 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
| 4 | 3 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+) |
| 5 | 4 | rpred 13077 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ) |
| 6 | eliooord 13446 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1(,)+∞) → (1 < 𝑥 ∧ 𝑥 < +∞)) | |
| 7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) |
| 8 | 7 | simpld 494 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥) |
| 9 | 5, 2, 8 | ltled 11409 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥) |
| 10 | 2, 4, 9 | rpgecld 13116 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+) |
| 11 | pntrlog2bndlem6.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 12 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ+) |
| 13 | pntrlog2bndlem6.2 | . . . . . . . 8 ⊢ (𝜑 → 1 ≤ 𝐴) | |
| 14 | 11, 12, 13 | rpgecld 13116 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+) |
| 16 | 10, 15 | rpdivcld 13094 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ+) |
| 17 | 16 | rprege0d 13084 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴))) |
| 18 | flge0nn0 13860 | . . . 4 ⊢ (((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴)) → (⌊‘(𝑥 / 𝐴)) ∈ ℕ0) | |
| 19 | nn0p1nn 12565 | . . . 4 ⊢ ((⌊‘(𝑥 / 𝐴)) ∈ ℕ0 → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ) | |
| 20 | 17, 18, 19 | 3syl 18 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ) |
| 21 | nnuz 12921 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 22 | 20, 21 | eleqtrdi 2851 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ≥‘1)) |
| 23 | 16 | rpred 13077 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ) |
| 24 | 10 | rpge0d 13081 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥) |
| 25 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝐴) |
| 26 | 4, 15, 2, 24, 25 | lediv2ad 13099 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ (𝑥 / 1)) |
| 27 | 2 | recnd 11289 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ) |
| 28 | 27 | div1d 12035 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥) |
| 29 | 26, 28 | breqtrd 5169 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ 𝑥) |
| 30 | flword2 13853 | . . 3 ⊢ (((𝑥 / 𝐴) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 / 𝐴) ≤ 𝑥) → (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) | |
| 31 | 23, 2, 29, 30 | syl3anc 1373 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) |
| 32 | fzsplit2 13589 | . 2 ⊢ ((((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ≥‘1) ∧ (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) | |
| 33 | 22, 31, 32 | syl2anc 584 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∪ cun 3949 ifcif 4525 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 · cmul 11160 +∞cpnf 11292 < clt 11295 ≤ cle 11296 − cmin 11492 / cdiv 11920 ℕcn 12266 ℕ0cn0 12526 ℤ≥cuz 12878 ℝ+crp 13034 (,)cioo 13387 ...cfz 13547 ⌊cfl 13830 abscabs 15273 Σcsu 15722 logclog 26596 Λcvma 27135 ψcchp 27136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ioo 13391 df-fz 13548 df-fl 13832 |
| This theorem is referenced by: pntrlog2bndlem6 27627 |
| Copyright terms: Public domain | W3C validator |