| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pntrlog2bndlem6a | Structured version Visualization version GIF version | ||
| Description: Lemma for pntrlog2bndlem6 27546. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| pntsval.1 | ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) |
| pntrlog2bnd.r | ⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎)) |
| pntrlog2bnd.t | ⊢ 𝑇 = (𝑎 ∈ ℝ ↦ if(𝑎 ∈ ℝ+, (𝑎 · (log‘𝑎)), 0)) |
| pntrlog2bndlem5.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| pntrlog2bndlem5.2 | ⊢ (𝜑 → ∀𝑦 ∈ ℝ+ (abs‘((𝑅‘𝑦) / 𝑦)) ≤ 𝐵) |
| pntrlog2bndlem6.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| pntrlog2bndlem6.2 | ⊢ (𝜑 → 1 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| pntrlog2bndlem6a | ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore 13392 | . . . . . . . 8 ⊢ (𝑥 ∈ (1(,)+∞) → 𝑥 ∈ ℝ) | |
| 2 | 1 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ) |
| 3 | 1rp 13012 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
| 4 | 3 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ+) |
| 5 | 4 | rpred 13051 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ∈ ℝ) |
| 6 | eliooord 13422 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (1(,)+∞) → (1 < 𝑥 ∧ 𝑥 < +∞)) | |
| 7 | 6 | adantl 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) |
| 8 | 7 | simpld 494 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 < 𝑥) |
| 9 | 5, 2, 8 | ltled 11383 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝑥) |
| 10 | 2, 4, 9 | rpgecld 13090 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℝ+) |
| 11 | pntrlog2bndlem6.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 12 | 3 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 1 ∈ ℝ+) |
| 13 | pntrlog2bndlem6.2 | . . . . . . . 8 ⊢ (𝜑 → 1 ≤ 𝐴) | |
| 14 | 11, 12, 13 | rpgecld 13090 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝐴 ∈ ℝ+) |
| 16 | 10, 15 | rpdivcld 13068 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ+) |
| 17 | 16 | rprege0d 13058 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴))) |
| 18 | flge0nn0 13837 | . . . 4 ⊢ (((𝑥 / 𝐴) ∈ ℝ ∧ 0 ≤ (𝑥 / 𝐴)) → (⌊‘(𝑥 / 𝐴)) ∈ ℕ0) | |
| 19 | nn0p1nn 12540 | . . . 4 ⊢ ((⌊‘(𝑥 / 𝐴)) ∈ ℕ0 → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ) | |
| 20 | 17, 18, 19 | 3syl 18 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ ℕ) |
| 21 | nnuz 12895 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 22 | 20, 21 | eleqtrdi 2844 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → ((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ≥‘1)) |
| 23 | 16 | rpred 13051 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ∈ ℝ) |
| 24 | 10 | rpge0d 13055 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 0 ≤ 𝑥) |
| 25 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 1 ≤ 𝐴) |
| 26 | 4, 15, 2, 24, 25 | lediv2ad 13073 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ (𝑥 / 1)) |
| 27 | 2 | recnd 11263 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → 𝑥 ∈ ℂ) |
| 28 | 27 | div1d 12009 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 1) = 𝑥) |
| 29 | 26, 28 | breqtrd 5145 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (𝑥 / 𝐴) ≤ 𝑥) |
| 30 | flword2 13830 | . . 3 ⊢ (((𝑥 / 𝐴) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑥 / 𝐴) ≤ 𝑥) → (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) | |
| 31 | 23, 2, 29, 30 | syl3anc 1373 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) |
| 32 | fzsplit2 13566 | . 2 ⊢ ((((⌊‘(𝑥 / 𝐴)) + 1) ∈ (ℤ≥‘1) ∧ (⌊‘𝑥) ∈ (ℤ≥‘(⌊‘(𝑥 / 𝐴)))) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) | |
| 33 | 22, 31, 32 | syl2anc 584 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ (1(,)+∞)) → (1...(⌊‘𝑥)) = ((1...(⌊‘(𝑥 / 𝐴))) ∪ (((⌊‘(𝑥 / 𝐴)) + 1)...(⌊‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∪ cun 3924 ifcif 4500 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 +∞cpnf 11266 < clt 11269 ≤ cle 11270 − cmin 11466 / cdiv 11894 ℕcn 12240 ℕ0cn0 12501 ℤ≥cuz 12852 ℝ+crp 13008 (,)cioo 13362 ...cfz 13524 ⌊cfl 13807 abscabs 15253 Σcsu 15702 logclog 26515 Λcvma 27054 ψcchp 27055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-ioo 13366 df-fz 13525 df-fl 13809 |
| This theorem is referenced by: pntrlog2bndlem6 27546 |
| Copyright terms: Public domain | W3C validator |