MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selbergb Structured version   Visualization version   GIF version

Theorem selbergb 25587
Description: Convert eventual boundedness in selberg 25586 to boundedness on [1, +∞). (We have to bound away from zero because the log terms diverge at zero.) (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selbergb 𝑐 ∈ ℝ+𝑥 ∈ (1[,)+∞)(abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐
Distinct variable group:   𝑛,𝑐,𝑥

Proof of Theorem selbergb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1re 10327 . . . . . . 7 1 ∈ ℝ
2 elicopnf 12516 . . . . . . 7 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
31, 2mp1i 13 . . . . . 6 (⊤ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
43simprbda 493 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
54ex 402 . . . 4 (⊤ → (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ))
65ssrdv 3803 . . 3 (⊤ → (1[,)+∞) ⊆ ℝ)
71a1i 11 . . 3 (⊤ → 1 ∈ ℝ)
8 fzfid 13024 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
9 elfznn 12621 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
109adantl 474 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
11 vmacl 25193 . . . . . . . . 9 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
1210, 11syl 17 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1310nnrpd 12112 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
1413relogcld 24707 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
154adantr 473 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
1615, 10nndivred 11364 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
17 chpcl 25199 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
1816, 17syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
1914, 18readdcld 10357 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))) ∈ ℝ)
2012, 19remulcld 10358 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
218, 20fsumrecl 14803 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
22 1rp 12075 . . . . . . . 8 1 ∈ ℝ+
2322a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 1 ∈ ℝ+)
243simplbda 494 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
254, 23, 24rpgecld 12153 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ+)
2621, 25rerpdivcld 12145 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ)
27 2re 11384 . . . . . . 7 2 ∈ ℝ
2827a1i 11 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 2 ∈ ℝ)
2925relogcld 24707 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (log‘𝑥) ∈ ℝ)
3028, 29remulcld 10358 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (2 · (log‘𝑥)) ∈ ℝ)
3126, 30resubcld 10749 . . . 4 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
3231recnd 10356 . . 3 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℂ)
3325ex 402 . . . . 5 (⊤ → (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ+))
3433ssrdv 3803 . . . 4 (⊤ → (1[,)+∞) ⊆ ℝ+)
35 selberg 25586 . . . . 5 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
3635a1i 11 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
3734, 36o1res2 14632 . . 3 (⊤ → (𝑥 ∈ (1[,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
38 fzfid 13024 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (1...(⌊‘𝑦)) ∈ Fin)
39 elfznn 12621 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑦)) → 𝑛 ∈ ℕ)
4039adantl 474 . . . . . . 7 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℕ)
4140, 11syl 17 . . . . . 6 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑛) ∈ ℝ)
4240nnrpd 12112 . . . . . . . 8 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℝ+)
4342relogcld 24707 . . . . . . 7 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (log‘𝑛) ∈ ℝ)
44 simprl 788 . . . . . . . . . 10 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ)
4544adantr 473 . . . . . . . . 9 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑦 ∈ ℝ)
4645, 40nndivred 11364 . . . . . . . 8 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑦 / 𝑛) ∈ ℝ)
47 chpcl 25199 . . . . . . . 8 ((𝑦 / 𝑛) ∈ ℝ → (ψ‘(𝑦 / 𝑛)) ∈ ℝ)
4846, 47syl 17 . . . . . . 7 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑦 / 𝑛)) ∈ ℝ)
4943, 48readdcld 10357 . . . . . 6 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((log‘𝑛) + (ψ‘(𝑦 / 𝑛))) ∈ ℝ)
5041, 49remulcld 10358 . . . . 5 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℝ)
5138, 50fsumrecl 14803 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℝ)
5227a1i 11 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 2 ∈ ℝ)
5322a1i 11 . . . . . . 7 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ∈ ℝ+)
54 simprr 790 . . . . . . 7 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ 𝑦)
5544, 53, 54rpgecld 12153 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ+)
5655relogcld 24707 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (log‘𝑦) ∈ ℝ)
5752, 56remulcld 10358 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (2 · (log‘𝑦)) ∈ ℝ)
5851, 57readdcld 10357 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))) ∈ ℝ)
5931adantr 473 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
6059recnd 10356 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℂ)
6160abscld 14513 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ ℝ)
6226adantr 473 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ)
6330adantr 473 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑥)) ∈ ℝ)
6462, 63readdcld 10357 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) + (2 · (log‘𝑥))) ∈ ℝ)
65 fzfid 13024 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘𝑦)) ∈ Fin)
6639adantl 474 . . . . . . . 8 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℕ)
6766, 11syl 17 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑛) ∈ ℝ)
6866nnrpd 12112 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℝ+)
6968relogcld 24707 . . . . . . . 8 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (log‘𝑛) ∈ ℝ)
70 simprll 798 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ)
7170adantr 473 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑦 ∈ ℝ)
7271, 66nndivred 11364 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑦 / 𝑛) ∈ ℝ)
7372, 47syl 17 . . . . . . . 8 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑦 / 𝑛)) ∈ ℝ)
7469, 73readdcld 10357 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((log‘𝑛) + (ψ‘(𝑦 / 𝑛))) ∈ ℝ)
7567, 74remulcld 10358 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℝ)
7665, 75fsumrecl 14803 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℝ)
7727a1i 11 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ)
7825adantr 473 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ+)
794adantr 473 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ)
80 simprr 790 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
8179, 70, 80ltled 10474 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥𝑦)
8270, 78, 81rpgecld 12153 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ+)
8382relogcld 24707 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℝ)
8477, 83remulcld 10358 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑦)) ∈ ℝ)
8576, 84readdcld 10357 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))) ∈ ℝ)
8662recnd 10356 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℂ)
8763recnd 10356 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑥)) ∈ ℂ)
8886, 87abs2dif2d 14535 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥)) + (abs‘(2 · (log‘𝑥)))))
8921adantr 473 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
90 vmage0 25196 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
9110, 90syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
9210nnred 11328 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
9310nnge1d 11358 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
9492, 93logge0d 24714 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑛))
95 chpge0 25201 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ → 0 ≤ (ψ‘(𝑥 / 𝑛)))
9616, 95syl 17 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (ψ‘(𝑥 / 𝑛)))
9714, 18, 94, 96addge0d 10894 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))))
9812, 19, 91, 97mulge0d 10895 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
998, 20, 98fsumge0 14862 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
10099adantr 473 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
10189, 78, 100divge0d 12154 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥))
10262, 101absidd 14499 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥))
10378relogcld 24707 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ)
104 2rp 12076 . . . . . . . . 9 2 ∈ ℝ+
105 rpge0 12086 . . . . . . . . 9 (2 ∈ ℝ+ → 0 ≤ 2)
106104, 105mp1i 13 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 2)
10724adantr 473 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑥)
10879, 107logge0d 24714 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑥))
10977, 103, 106, 108mulge0d 10895 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (2 · (log‘𝑥)))
11063, 109absidd 14499 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(2 · (log‘𝑥))) = (2 · (log‘𝑥)))
111102, 110oveq12d 6895 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥)) + (abs‘(2 · (log‘𝑥)))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) + (2 · (log‘𝑥))))
11288, 111breqtrd 4868 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) + (2 · (log‘𝑥))))
11322a1i 11 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ∈ ℝ+)
11479adantr 473 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑥 ∈ ℝ)
115114, 66nndivred 11364 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑥 / 𝑛) ∈ ℝ)
116115, 17syl 17 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
11769, 116readdcld 10357 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))) ∈ ℝ)
11867, 117remulcld 10358 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
11965, 118fsumrecl 14803 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
12066, 90syl 17 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ (Λ‘𝑛))
12166nnred 11328 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℝ)
12266nnge1d 11358 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 1 ≤ 𝑛)
123121, 122logge0d 24714 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ (log‘𝑛))
124115, 95syl 17 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ (ψ‘(𝑥 / 𝑛)))
12569, 116, 123, 124addge0d 10894 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))))
12667, 117, 120, 125mulge0d 10895 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
127 flword2 12866 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (⌊‘𝑦) ∈ (ℤ‘(⌊‘𝑥)))
12879, 70, 81, 127syl3anc 1491 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (⌊‘𝑦) ∈ (ℤ‘(⌊‘𝑥)))
129 fzss2 12632 . . . . . . . . . 10 ((⌊‘𝑦) ∈ (ℤ‘(⌊‘𝑥)) → (1...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑦)))
130128, 129syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑦)))
13165, 118, 126, 130fsumless 14863 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
13281adantr 473 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑥𝑦)
133114, 71, 68, 132lediv1dd 12172 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑥 / 𝑛) ≤ (𝑦 / 𝑛))
134 chpwordi 25232 . . . . . . . . . . . 12 (((𝑥 / 𝑛) ∈ ℝ ∧ (𝑦 / 𝑛) ∈ ℝ ∧ (𝑥 / 𝑛) ≤ (𝑦 / 𝑛)) → (ψ‘(𝑥 / 𝑛)) ≤ (ψ‘(𝑦 / 𝑛)))
135115, 72, 133, 134syl3anc 1491 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑥 / 𝑛)) ≤ (ψ‘(𝑦 / 𝑛)))
136116, 73, 69, 135leadd2dd 10933 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))) ≤ ((log‘𝑛) + (ψ‘(𝑦 / 𝑛))))
137117, 74, 67, 120, 136lemul2ad 11255 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ≤ ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
13865, 118, 75, 137fsumle 14866 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
13989, 119, 76, 131, 138letrd 10483 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
14089, 76, 113, 79, 100, 139, 107lediv12ad 12173 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) / 1))
14176recnd 10356 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℂ)
142141div1d 11084 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) / 1) = Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
143140, 142breqtrd 4868 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
14478, 82logled 24711 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑥𝑦 ↔ (log‘𝑥) ≤ (log‘𝑦)))
14581, 144mpbid 224 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ≤ (log‘𝑦))
146103, 83, 77, 106, 145lemul2ad 11255 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑥)) ≤ (2 · (log‘𝑦)))
14762, 63, 76, 84, 143, 146le2addd 10937 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) + (2 · (log‘𝑥))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))))
14861, 64, 85, 112, 147letrd 10483 . . 3 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))))
1496, 7, 32, 37, 58, 148o1bddrp 14611 . 2 (⊤ → ∃𝑐 ∈ ℝ+𝑥 ∈ (1[,)+∞)(abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐)
150149mptru 1661 1 𝑐 ∈ ℝ+𝑥 ∈ (1[,)+∞)(abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 385  wtru 1654  wcel 2157  wral 3088  wrex 3089  wss 3768   class class class wbr 4842  cmpt 4921  cfv 6100  (class class class)co 6877  cr 10222  0cc0 10223  1c1 10224   + caddc 10226   · cmul 10228  +∞cpnf 10359   < clt 10362  cle 10363  cmin 10555   / cdiv 10975  cn 11311  2c2 11365  cuz 11927  +crp 12071  [,)cico 12423  ...cfz 12577  cfl 12843  abscabs 14312  𝑂(1)co1 14555  Σcsu 14754  logclog 24639  Λcvma 25167  ψcchp 25168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-rep 4963  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-inf2 8787  ax-cnex 10279  ax-resscn 10280  ax-1cn 10281  ax-icn 10282  ax-addcl 10283  ax-addrcl 10284  ax-mulcl 10285  ax-mulrcl 10286  ax-mulcom 10287  ax-addass 10288  ax-mulass 10289  ax-distr 10290  ax-i2m1 10291  ax-1ne0 10292  ax-1rid 10293  ax-rnegex 10294  ax-rrecex 10295  ax-cnre 10296  ax-pre-lttri 10297  ax-pre-lttrn 10298  ax-pre-ltadd 10299  ax-pre-mulgt0 10300  ax-pre-sup 10301  ax-addf 10302  ax-mulf 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-pss 3784  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4628  df-int 4667  df-iun 4711  df-iin 4712  df-disj 4811  df-br 4843  df-opab 4905  df-mpt 4922  df-tr 4945  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5897  df-ord 5943  df-on 5944  df-lim 5945  df-suc 5946  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-isom 6109  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-of 7130  df-om 7299  df-1st 7400  df-2nd 7401  df-supp 7532  df-wrecs 7644  df-recs 7706  df-rdg 7744  df-1o 7798  df-2o 7799  df-oadd 7802  df-er 7981  df-map 8096  df-pm 8097  df-ixp 8148  df-en 8195  df-dom 8196  df-sdom 8197  df-fin 8198  df-fsupp 8517  df-fi 8558  df-sup 8589  df-inf 8590  df-oi 8656  df-card 9050  df-cda 9277  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10557  df-neg 10558  df-div 10976  df-nn 11312  df-2 11373  df-3 11374  df-4 11375  df-5 11376  df-6 11377  df-7 11378  df-8 11379  df-9 11380  df-n0 11578  df-xnn0 11650  df-z 11664  df-dec 11781  df-uz 11928  df-q 12031  df-rp 12072  df-xneg 12190  df-xadd 12191  df-xmul 12192  df-ioo 12425  df-ioc 12426  df-ico 12427  df-icc 12428  df-fz 12578  df-fzo 12718  df-fl 12845  df-mod 12921  df-seq 13053  df-exp 13112  df-fac 13311  df-bc 13340  df-hash 13368  df-shft 14145  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-limsup 14540  df-clim 14557  df-rlim 14558  df-o1 14559  df-lo1 14560  df-sum 14755  df-ef 15131  df-e 15132  df-sin 15133  df-cos 15134  df-pi 15136  df-dvds 15317  df-gcd 15549  df-prm 15717  df-pc 15872  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-starv 16279  df-sca 16280  df-vsca 16281  df-ip 16282  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-hom 16288  df-cco 16289  df-rest 16395  df-topn 16396  df-0g 16414  df-gsum 16415  df-topgen 16416  df-pt 16417  df-prds 16420  df-xrs 16474  df-qtop 16479  df-imas 16480  df-xps 16482  df-mre 16558  df-mrc 16559  df-acs 16561  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-submnd 17648  df-mulg 17854  df-cntz 18059  df-cmn 18507  df-psmet 20057  df-xmet 20058  df-met 20059  df-bl 20060  df-mopn 20061  df-fbas 20062  df-fg 20063  df-cnfld 20066  df-top 21024  df-topon 21041  df-topsp 21063  df-bases 21076  df-cld 21149  df-ntr 21150  df-cls 21151  df-nei 21228  df-lp 21266  df-perf 21267  df-cn 21357  df-cnp 21358  df-haus 21445  df-cmp 21516  df-tx 21691  df-hmeo 21884  df-fil 21975  df-fm 22067  df-flim 22068  df-flf 22069  df-xms 22450  df-ms 22451  df-tms 22452  df-cncf 23006  df-limc 23968  df-dv 23969  df-log 24641  df-cxp 24642  df-em 25068  df-vma 25173  df-chp 25174  df-mu 25176
This theorem is referenced by:  selberg4  25599  selbergsb  25613
  Copyright terms: Public domain W3C validator