MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selbergb Structured version   Visualization version   GIF version

Theorem selbergb 26041
Description: Convert eventual boundedness in selberg 26040 to boundedness on [1, +∞). (We have to bound away from zero because the log terms diverge at zero.) (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selbergb 𝑐 ∈ ℝ+𝑥 ∈ (1[,)+∞)(abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐
Distinct variable group:   𝑛,𝑐,𝑥

Proof of Theorem selbergb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1re 10633 . . . . . . 7 1 ∈ ℝ
2 elicopnf 12826 . . . . . . 7 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
31, 2mp1i 13 . . . . . 6 (⊤ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
43simprbda 499 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
54ex 413 . . . 4 (⊤ → (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ))
65ssrdv 3976 . . 3 (⊤ → (1[,)+∞) ⊆ ℝ)
71a1i 11 . . 3 (⊤ → 1 ∈ ℝ)
8 fzfid 13334 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
9 elfznn 12929 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
109adantl 482 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
11 vmacl 25611 . . . . . . . . 9 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
1210, 11syl 17 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1310nnrpd 12422 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
1413relogcld 25121 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
154adantr 481 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
1615, 10nndivred 11683 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
17 chpcl 25617 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
1816, 17syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
1914, 18readdcld 10662 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))) ∈ ℝ)
2012, 19remulcld 10663 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
218, 20fsumrecl 15083 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
22 1rp 12386 . . . . . . . 8 1 ∈ ℝ+
2322a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 1 ∈ ℝ+)
243simplbda 500 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
254, 23, 24rpgecld 12463 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ+)
2621, 25rerpdivcld 12455 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ)
27 2re 11703 . . . . . . 7 2 ∈ ℝ
2827a1i 11 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 2 ∈ ℝ)
2925relogcld 25121 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (log‘𝑥) ∈ ℝ)
3028, 29remulcld 10663 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (2 · (log‘𝑥)) ∈ ℝ)
3126, 30resubcld 11060 . . . 4 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
3231recnd 10661 . . 3 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℂ)
3325ex 413 . . . . 5 (⊤ → (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ+))
3433ssrdv 3976 . . . 4 (⊤ → (1[,)+∞) ⊆ ℝ+)
35 selberg 26040 . . . . 5 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
3635a1i 11 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
3734, 36o1res2 14913 . . 3 (⊤ → (𝑥 ∈ (1[,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
38 fzfid 13334 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (1...(⌊‘𝑦)) ∈ Fin)
39 elfznn 12929 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑦)) → 𝑛 ∈ ℕ)
4039adantl 482 . . . . . . 7 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℕ)
4140, 11syl 17 . . . . . 6 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑛) ∈ ℝ)
4240nnrpd 12422 . . . . . . . 8 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℝ+)
4342relogcld 25121 . . . . . . 7 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (log‘𝑛) ∈ ℝ)
44 simprl 767 . . . . . . . . . 10 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ)
4544adantr 481 . . . . . . . . 9 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑦 ∈ ℝ)
4645, 40nndivred 11683 . . . . . . . 8 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑦 / 𝑛) ∈ ℝ)
47 chpcl 25617 . . . . . . . 8 ((𝑦 / 𝑛) ∈ ℝ → (ψ‘(𝑦 / 𝑛)) ∈ ℝ)
4846, 47syl 17 . . . . . . 7 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑦 / 𝑛)) ∈ ℝ)
4943, 48readdcld 10662 . . . . . 6 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((log‘𝑛) + (ψ‘(𝑦 / 𝑛))) ∈ ℝ)
5041, 49remulcld 10663 . . . . 5 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℝ)
5138, 50fsumrecl 15083 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℝ)
5227a1i 11 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 2 ∈ ℝ)
5322a1i 11 . . . . . . 7 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ∈ ℝ+)
54 simprr 769 . . . . . . 7 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ 𝑦)
5544, 53, 54rpgecld 12463 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ+)
5655relogcld 25121 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (log‘𝑦) ∈ ℝ)
5752, 56remulcld 10663 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (2 · (log‘𝑦)) ∈ ℝ)
5851, 57readdcld 10662 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))) ∈ ℝ)
5931adantr 481 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
6059recnd 10661 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℂ)
6160abscld 14789 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ ℝ)
6226adantr 481 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ)
6330adantr 481 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑥)) ∈ ℝ)
6462, 63readdcld 10662 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) + (2 · (log‘𝑥))) ∈ ℝ)
65 fzfid 13334 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘𝑦)) ∈ Fin)
6639adantl 482 . . . . . . . 8 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℕ)
6766, 11syl 17 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑛) ∈ ℝ)
6866nnrpd 12422 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℝ+)
6968relogcld 25121 . . . . . . . 8 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (log‘𝑛) ∈ ℝ)
70 simprll 775 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ)
7170adantr 481 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑦 ∈ ℝ)
7271, 66nndivred 11683 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑦 / 𝑛) ∈ ℝ)
7372, 47syl 17 . . . . . . . 8 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑦 / 𝑛)) ∈ ℝ)
7469, 73readdcld 10662 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((log‘𝑛) + (ψ‘(𝑦 / 𝑛))) ∈ ℝ)
7567, 74remulcld 10663 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℝ)
7665, 75fsumrecl 15083 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℝ)
7727a1i 11 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ)
7825adantr 481 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ+)
794adantr 481 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ)
80 simprr 769 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
8179, 70, 80ltled 10780 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥𝑦)
8270, 78, 81rpgecld 12463 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ+)
8382relogcld 25121 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℝ)
8477, 83remulcld 10663 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑦)) ∈ ℝ)
8576, 84readdcld 10662 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))) ∈ ℝ)
8662recnd 10661 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℂ)
8763recnd 10661 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑥)) ∈ ℂ)
8886, 87abs2dif2d 14811 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥)) + (abs‘(2 · (log‘𝑥)))))
8921adantr 481 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
90 vmage0 25614 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
9110, 90syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
9210nnred 11645 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
9310nnge1d 11677 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
9492, 93logge0d 25128 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑛))
95 chpge0 25619 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ → 0 ≤ (ψ‘(𝑥 / 𝑛)))
9616, 95syl 17 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (ψ‘(𝑥 / 𝑛)))
9714, 18, 94, 96addge0d 11208 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))))
9812, 19, 91, 97mulge0d 11209 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
998, 20, 98fsumge0 15142 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
10099adantr 481 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
10189, 78, 100divge0d 12464 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥))
10262, 101absidd 14775 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥))
10378relogcld 25121 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ)
104 2rp 12387 . . . . . . . . 9 2 ∈ ℝ+
105 rpge0 12395 . . . . . . . . 9 (2 ∈ ℝ+ → 0 ≤ 2)
106104, 105mp1i 13 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 2)
10724adantr 481 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑥)
10879, 107logge0d 25128 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑥))
10977, 103, 106, 108mulge0d 11209 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (2 · (log‘𝑥)))
11063, 109absidd 14775 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(2 · (log‘𝑥))) = (2 · (log‘𝑥)))
111102, 110oveq12d 7169 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥)) + (abs‘(2 · (log‘𝑥)))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) + (2 · (log‘𝑥))))
11288, 111breqtrd 5088 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) + (2 · (log‘𝑥))))
11322a1i 11 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ∈ ℝ+)
11479adantr 481 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑥 ∈ ℝ)
115114, 66nndivred 11683 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑥 / 𝑛) ∈ ℝ)
116115, 17syl 17 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
11769, 116readdcld 10662 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))) ∈ ℝ)
11867, 117remulcld 10663 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
11965, 118fsumrecl 15083 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
12066, 90syl 17 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ (Λ‘𝑛))
12166nnred 11645 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℝ)
12266nnge1d 11677 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 1 ≤ 𝑛)
123121, 122logge0d 25128 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ (log‘𝑛))
124115, 95syl 17 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ (ψ‘(𝑥 / 𝑛)))
12569, 116, 123, 124addge0d 11208 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))))
12667, 117, 120, 125mulge0d 11209 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
127 flword2 13176 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (⌊‘𝑦) ∈ (ℤ‘(⌊‘𝑥)))
12879, 70, 81, 127syl3anc 1365 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (⌊‘𝑦) ∈ (ℤ‘(⌊‘𝑥)))
129 fzss2 12940 . . . . . . . . . 10 ((⌊‘𝑦) ∈ (ℤ‘(⌊‘𝑥)) → (1...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑦)))
130128, 129syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑦)))
13165, 118, 126, 130fsumless 15143 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
13281adantr 481 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑥𝑦)
133114, 71, 68, 132lediv1dd 12482 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑥 / 𝑛) ≤ (𝑦 / 𝑛))
134 chpwordi 25650 . . . . . . . . . . . 12 (((𝑥 / 𝑛) ∈ ℝ ∧ (𝑦 / 𝑛) ∈ ℝ ∧ (𝑥 / 𝑛) ≤ (𝑦 / 𝑛)) → (ψ‘(𝑥 / 𝑛)) ≤ (ψ‘(𝑦 / 𝑛)))
135115, 72, 133, 134syl3anc 1365 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑥 / 𝑛)) ≤ (ψ‘(𝑦 / 𝑛)))
136116, 73, 69, 135leadd2dd 11247 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))) ≤ ((log‘𝑛) + (ψ‘(𝑦 / 𝑛))))
137117, 74, 67, 120, 136lemul2ad 11572 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ≤ ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
13865, 118, 75, 137fsumle 15146 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
13989, 119, 76, 131, 138letrd 10789 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
14089, 76, 113, 79, 100, 139, 107lediv12ad 12483 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) / 1))
14176recnd 10661 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℂ)
142141div1d 11400 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) / 1) = Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
143140, 142breqtrd 5088 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
14478, 82logled 25125 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑥𝑦 ↔ (log‘𝑥) ≤ (log‘𝑦)))
14581, 144mpbid 233 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ≤ (log‘𝑦))
146103, 83, 77, 106, 145lemul2ad 11572 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑥)) ≤ (2 · (log‘𝑦)))
14762, 63, 76, 84, 143, 146le2addd 11251 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) + (2 · (log‘𝑥))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))))
14861, 64, 85, 112, 147letrd 10789 . . 3 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))))
1496, 7, 32, 37, 58, 148o1bddrp 14892 . 2 (⊤ → ∃𝑐 ∈ ℝ+𝑥 ∈ (1[,)+∞)(abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐)
150149mptru 1537 1 𝑐 ∈ ℝ+𝑥 ∈ (1[,)+∞)(abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  wtru 1531  wcel 2107  wral 3142  wrex 3143  wss 3939   class class class wbr 5062  cmpt 5142  cfv 6351  (class class class)co 7151  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  +∞cpnf 10664   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  2c2 11684  cuz 12235  +crp 12382  [,)cico 12733  ...cfz 12885  cfl 13153  abscabs 14586  𝑂(1)co1 14836  Σcsu 15035  logclog 25053  Λcvma 25585  ψcchp 25586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-disj 5028  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ioc 12736  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-fac 13627  df-bc 13656  df-hash 13684  df-shft 14419  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-limsup 14821  df-clim 14838  df-rlim 14839  df-o1 14840  df-lo1 14841  df-sum 15036  df-ef 15413  df-e 15414  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-dvds 15600  df-gcd 15836  df-prm 16008  df-pc 16166  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-mulg 18157  df-cntz 18379  df-cmn 18830  df-psmet 20455  df-xmet 20456  df-met 20457  df-bl 20458  df-mopn 20459  df-fbas 20460  df-fg 20461  df-cnfld 20464  df-top 21420  df-topon 21437  df-topsp 21459  df-bases 21472  df-cld 21545  df-ntr 21546  df-cls 21547  df-nei 21624  df-lp 21662  df-perf 21663  df-cn 21753  df-cnp 21754  df-haus 21841  df-cmp 21913  df-tx 22088  df-hmeo 22281  df-fil 22372  df-fm 22464  df-flim 22465  df-flf 22466  df-xms 22847  df-ms 22848  df-tms 22849  df-cncf 23403  df-limc 24381  df-dv 24382  df-ulm 24882  df-log 25055  df-cxp 25056  df-atan 25360  df-em 25486  df-vma 25591  df-chp 25592  df-mu 25594
This theorem is referenced by:  selberg4  26053  selbergsb  26067
  Copyright terms: Public domain W3C validator