MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selbergb Structured version   Visualization version   GIF version

Theorem selbergb 27512
Description: Convert eventual boundedness in selberg 27511 to boundedness on [1, +∞). (We have to bound away from zero because the log terms diverge at zero.) (Contributed by Mario Carneiro, 30-May-2016.)
Assertion
Ref Expression
selbergb 𝑐 ∈ ℝ+𝑥 ∈ (1[,)+∞)(abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐
Distinct variable group:   𝑛,𝑐,𝑥

Proof of Theorem selbergb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 1re 11235 . . . . . . 7 1 ∈ ℝ
2 elicopnf 13462 . . . . . . 7 (1 ∈ ℝ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
31, 2mp1i 13 . . . . . 6 (⊤ → (𝑥 ∈ (1[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)))
43simprbda 498 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
54ex 412 . . . 4 (⊤ → (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ))
65ssrdv 3964 . . 3 (⊤ → (1[,)+∞) ⊆ ℝ)
71a1i 11 . . 3 (⊤ → 1 ∈ ℝ)
8 fzfid 13991 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin)
9 elfznn 13570 . . . . . . . . . 10 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
109adantl 481 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
11 vmacl 27080 . . . . . . . . 9 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
1210, 11syl 17 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
1310nnrpd 13049 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
1413relogcld 26584 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈ ℝ)
154adantr 480 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
1615, 10nndivred 12294 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
17 chpcl 27086 . . . . . . . . . 10 ((𝑥 / 𝑛) ∈ ℝ → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
1816, 17syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
1914, 18readdcld 11264 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))) ∈ ℝ)
2012, 19remulcld 11265 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
218, 20fsumrecl 15750 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
22 1rp 13012 . . . . . . . 8 1 ∈ ℝ+
2322a1i 11 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 1 ∈ ℝ+)
243simplbda 499 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
254, 23, 24rpgecld 13090 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ+)
2621, 25rerpdivcld 13082 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ)
27 2re 12314 . . . . . . 7 2 ∈ ℝ
2827a1i 11 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 2 ∈ ℝ)
2925relogcld 26584 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (log‘𝑥) ∈ ℝ)
3028, 29remulcld 11265 . . . . 5 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → (2 · (log‘𝑥)) ∈ ℝ)
3126, 30resubcld 11665 . . . 4 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
3231recnd 11263 . . 3 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℂ)
3325ex 412 . . . . 5 (⊤ → (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ+))
3433ssrdv 3964 . . . 4 (⊤ → (1[,)+∞) ⊆ ℝ+)
35 selberg 27511 . . . . 5 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
3635a1i 11 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
3734, 36o1res2 15579 . . 3 (⊤ → (𝑥 ∈ (1[,)+∞) ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
38 fzfid 13991 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (1...(⌊‘𝑦)) ∈ Fin)
39 elfznn 13570 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑦)) → 𝑛 ∈ ℕ)
4039adantl 481 . . . . . . 7 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℕ)
4140, 11syl 17 . . . . . 6 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑛) ∈ ℝ)
4240nnrpd 13049 . . . . . . . 8 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℝ+)
4342relogcld 26584 . . . . . . 7 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (log‘𝑛) ∈ ℝ)
44 simprl 770 . . . . . . . . . 10 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ)
4544adantr 480 . . . . . . . . 9 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑦 ∈ ℝ)
4645, 40nndivred 12294 . . . . . . . 8 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑦 / 𝑛) ∈ ℝ)
47 chpcl 27086 . . . . . . . 8 ((𝑦 / 𝑛) ∈ ℝ → (ψ‘(𝑦 / 𝑛)) ∈ ℝ)
4846, 47syl 17 . . . . . . 7 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑦 / 𝑛)) ∈ ℝ)
4943, 48readdcld 11264 . . . . . 6 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((log‘𝑛) + (ψ‘(𝑦 / 𝑛))) ∈ ℝ)
5041, 49remulcld 11265 . . . . 5 (((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℝ)
5138, 50fsumrecl 15750 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℝ)
5227a1i 11 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 2 ∈ ℝ)
5322a1i 11 . . . . . . 7 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ∈ ℝ+)
54 simprr 772 . . . . . . 7 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 1 ≤ 𝑦)
5544, 53, 54rpgecld 13090 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → 𝑦 ∈ ℝ+)
5655relogcld 26584 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (log‘𝑦) ∈ ℝ)
5752, 56remulcld 11265 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (2 · (log‘𝑦)) ∈ ℝ)
5851, 57readdcld 11264 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))) ∈ ℝ)
5931adantr 480 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℝ)
6059recnd 11263 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥))) ∈ ℂ)
6160abscld 15455 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ∈ ℝ)
6226adantr 480 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℝ)
6330adantr 480 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑥)) ∈ ℝ)
6462, 63readdcld 11264 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) + (2 · (log‘𝑥))) ∈ ℝ)
65 fzfid 13991 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘𝑦)) ∈ Fin)
6639adantl 481 . . . . . . . 8 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℕ)
6766, 11syl 17 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (Λ‘𝑛) ∈ ℝ)
6866nnrpd 13049 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℝ+)
6968relogcld 26584 . . . . . . . 8 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (log‘𝑛) ∈ ℝ)
70 simprll 778 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ)
7170adantr 480 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑦 ∈ ℝ)
7271, 66nndivred 12294 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑦 / 𝑛) ∈ ℝ)
7372, 47syl 17 . . . . . . . 8 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑦 / 𝑛)) ∈ ℝ)
7469, 73readdcld 11264 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((log‘𝑛) + (ψ‘(𝑦 / 𝑛))) ∈ ℝ)
7567, 74remulcld 11265 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℝ)
7665, 75fsumrecl 15750 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℝ)
7727a1i 11 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ)
7825adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ+)
794adantr 480 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ)
80 simprr 772 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
8179, 70, 80ltled 11383 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥𝑦)
8270, 78, 81rpgecld 13090 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ+)
8382relogcld 26584 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑦) ∈ ℝ)
8477, 83remulcld 11265 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑦)) ∈ ℝ)
8576, 84readdcld 11264 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))) ∈ ℝ)
8662recnd 11263 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ∈ ℂ)
8763recnd 11263 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑥)) ∈ ℂ)
8886, 87abs2dif2d 15477 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥)) + (abs‘(2 · (log‘𝑥)))))
8921adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
90 vmage0 27083 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 ≤ (Λ‘𝑛))
9110, 90syl 17 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (Λ‘𝑛))
9210nnred 12255 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
9310nnge1d 12288 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ 𝑛)
9492, 93logge0d 26591 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘𝑛))
95 chpge0 27088 . . . . . . . . . . . . 13 ((𝑥 / 𝑛) ∈ ℝ → 0 ≤ (ψ‘(𝑥 / 𝑛)))
9616, 95syl 17 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (ψ‘(𝑥 / 𝑛)))
9714, 18, 94, 96addge0d 11813 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))))
9812, 19, 91, 97mulge0d 11814 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
998, 20, 98fsumge0 15811 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (1[,)+∞)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
10099adantr 480 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
10189, 78, 100divge0d 13091 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥))
10262, 101absidd 15441 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥))
10378relogcld 26584 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ∈ ℝ)
104 2rp 13013 . . . . . . . . 9 2 ∈ ℝ+
105 rpge0 13022 . . . . . . . . 9 (2 ∈ ℝ+ → 0 ≤ 2)
106104, 105mp1i 13 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ 2)
10724adantr 480 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ≤ 𝑥)
10879, 107logge0d 26591 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (log‘𝑥))
10977, 103, 106, 108mulge0d 11814 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (2 · (log‘𝑥)))
11063, 109absidd 15441 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘(2 · (log‘𝑥))) = (2 · (log‘𝑥)))
111102, 110oveq12d 7423 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥)) + (abs‘(2 · (log‘𝑥)))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) + (2 · (log‘𝑥))))
11288, 111breqtrd 5145 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) + (2 · (log‘𝑥))))
11322a1i 11 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 1 ∈ ℝ+)
11479adantr 480 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑥 ∈ ℝ)
115114, 66nndivred 12294 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑥 / 𝑛) ∈ ℝ)
116115, 17syl 17 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑥 / 𝑛)) ∈ ℝ)
11769, 116readdcld 11264 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))) ∈ ℝ)
11867, 117remulcld 11265 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
11965, 118fsumrecl 15750 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ∈ ℝ)
12066, 90syl 17 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ (Λ‘𝑛))
12166nnred 12255 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑛 ∈ ℝ)
12266nnge1d 12288 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 1 ≤ 𝑛)
123121, 122logge0d 26591 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ (log‘𝑛))
124115, 95syl 17 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ (ψ‘(𝑥 / 𝑛)))
12569, 116, 123, 124addge0d 11813 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))))
12667, 117, 120, 125mulge0d 11814 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 0 ≤ ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
127 flword2 13830 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (⌊‘𝑦) ∈ (ℤ‘(⌊‘𝑥)))
12879, 70, 81, 127syl3anc 1373 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (⌊‘𝑦) ∈ (ℤ‘(⌊‘𝑥)))
129 fzss2 13581 . . . . . . . . . 10 ((⌊‘𝑦) ∈ (ℤ‘(⌊‘𝑥)) → (1...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑦)))
130128, 129syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (1...(⌊‘𝑥)) ⊆ (1...(⌊‘𝑦)))
13165, 118, 126, 130fsumless 15812 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))))
13281adantr 480 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → 𝑥𝑦)
133114, 71, 68, 132lediv1dd 13109 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (𝑥 / 𝑛) ≤ (𝑦 / 𝑛))
134 chpwordi 27119 . . . . . . . . . . . 12 (((𝑥 / 𝑛) ∈ ℝ ∧ (𝑦 / 𝑛) ∈ ℝ ∧ (𝑥 / 𝑛) ≤ (𝑦 / 𝑛)) → (ψ‘(𝑥 / 𝑛)) ≤ (ψ‘(𝑦 / 𝑛)))
135115, 72, 133, 134syl3anc 1373 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → (ψ‘(𝑥 / 𝑛)) ≤ (ψ‘(𝑦 / 𝑛)))
136116, 73, 69, 135leadd2dd 11852 . . . . . . . . . 10 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((log‘𝑛) + (ψ‘(𝑥 / 𝑛))) ≤ ((log‘𝑛) + (ψ‘(𝑦 / 𝑛))))
137117, 74, 67, 120, 136lemul2ad 12182 . . . . . . . . 9 ((((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑛 ∈ (1...(⌊‘𝑦))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ≤ ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
13865, 118, 75, 137fsumle 15815 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
13989, 119, 76, 131, 138letrd 11392 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
14089, 76, 113, 79, 100, 139, 107lediv12ad 13110 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) / 1))
14176recnd 11263 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) ∈ ℂ)
142141div1d 12009 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) / 1) = Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
143140, 142breqtrd 5145 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) ≤ Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))))
14478, 82logled 26588 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (𝑥𝑦 ↔ (log‘𝑥) ≤ (log‘𝑦)))
14581, 144mpbid 232 . . . . . 6 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (log‘𝑥) ≤ (log‘𝑦))
146103, 83, 77, 106, 145lemul2ad 12182 . . . . 5 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (2 · (log‘𝑥)) ≤ (2 · (log‘𝑦)))
14762, 63, 76, 84, 143, 146le2addd 11856 . . . 4 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) + (2 · (log‘𝑥))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))))
14861, 64, 85, 112, 147letrd 11392 . . 3 (((⊤ ∧ 𝑥 ∈ (1[,)+∞)) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑦))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑦 / 𝑛)))) + (2 · (log‘𝑦))))
1496, 7, 32, 37, 58, 148o1bddrp 15558 . 2 (⊤ → ∃𝑐 ∈ ℝ+𝑥 ∈ (1[,)+∞)(abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐)
150149mptru 1547 1 𝑐 ∈ ℝ+𝑥 ∈ (1[,)+∞)(abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑥 / 𝑛)))) / 𝑥) − (2 · (log‘𝑥)))) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wtru 1541  wcel 2108  wral 3051  wrex 3060  wss 3926   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  +∞cpnf 11266   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  cuz 12852  +crp 13008  [,)cico 13364  ...cfz 13524  cfl 13807  abscabs 15253  𝑂(1)co1 15502  Σcsu 15702  logclog 26515  Λcvma 27054  ψcchp 27055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-o1 15506  df-lo1 15507  df-sum 15703  df-ef 16083  df-e 16084  df-sin 16085  df-cos 16086  df-tan 16087  df-pi 16088  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-ulm 26338  df-log 26517  df-cxp 26518  df-atan 26829  df-em 26955  df-vma 27060  df-chp 27061  df-mu 27063
This theorem is referenced by:  selberg4  27524  selbergsb  27538
  Copyright terms: Public domain W3C validator