| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > saliuncl | Structured version Visualization version GIF version | ||
| Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| saliuncl.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| saliuncl.kct | ⊢ (𝜑 → 𝐾 ≼ ω) |
| saliuncl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| saliuncl | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1913 | . 2 ⊢ Ⅎ𝑘𝜑 | |
| 2 | nfcv 2897 | . 2 ⊢ Ⅎ𝑘𝑆 | |
| 3 | nfcv 2897 | . 2 ⊢ Ⅎ𝑘𝐾 | |
| 4 | saliuncl.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 5 | saliuncl.kct | . 2 ⊢ (𝜑 → 𝐾 ≼ ω) | |
| 6 | saliuncl.b | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
| 7 | 1, 2, 3, 4, 5, 6 | saliunclf 46287 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ∪ ciun 4965 class class class wbr 5117 ωcom 7856 ≼ cdom 8952 SAlgcsalg 46273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-er 8714 df-map 8837 df-en 8955 df-dom 8956 df-card 9946 df-acn 9949 df-salg 46274 |
| This theorem is referenced by: subsaliuncl 46323 meaiunlelem 46433 meaiuninclem 46445 meaiuninc3v 46449 meaiininclem 46451 caratheodory 46493 opnvonmbllem2 46598 ctvonmbl 46654 vonct 46658 smfaddlem2 46729 smflimlem1 46736 smfresal 46753 smfmullem4 46759 |
| Copyright terms: Public domain | W3C validator |