| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > saliuncl | Structured version Visualization version GIF version | ||
| Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| saliuncl.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| saliuncl.kct | ⊢ (𝜑 → 𝐾 ≼ ω) |
| saliuncl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| saliuncl | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑘𝜑 | |
| 2 | nfcv 2892 | . 2 ⊢ Ⅎ𝑘𝑆 | |
| 3 | nfcv 2892 | . 2 ⊢ Ⅎ𝑘𝐾 | |
| 4 | saliuncl.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 5 | saliuncl.kct | . 2 ⊢ (𝜑 → 𝐾 ≼ ω) | |
| 6 | saliuncl.b | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
| 7 | 1, 2, 3, 4, 5, 6 | saliunclf 46327 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∪ ciun 4958 class class class wbr 5110 ωcom 7845 ≼ cdom 8919 SAlgcsalg 46313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-card 9899 df-acn 9902 df-salg 46314 |
| This theorem is referenced by: subsaliuncl 46363 meaiunlelem 46473 meaiuninclem 46485 meaiuninc3v 46489 meaiininclem 46491 caratheodory 46533 opnvonmbllem2 46638 ctvonmbl 46694 vonct 46698 smfaddlem2 46769 smflimlem1 46776 smfresal 46793 smfmullem4 46799 |
| Copyright terms: Public domain | W3C validator |