![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > saliuncl | Structured version Visualization version GIF version |
Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saliuncl.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
saliuncl.kct | ⊢ (𝜑 → 𝐾 ≼ ω) |
saliuncl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
Ref | Expression |
---|---|
saliuncl | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | saliuncl.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
2 | 1 | ralrimiva 3175 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
3 | dfiun3g 5611 | . . 3 ⊢ (∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸)) |
5 | saliuncl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | eqid 2825 | . . . . . 6 ⊢ (𝑘 ∈ 𝐾 ↦ 𝐸) = (𝑘 ∈ 𝐾 ↦ 𝐸) | |
7 | 6 | rnmptss 6641 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆) |
9 | 5, 8 | ssexd 5030 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ V) |
10 | elpwg 4386 | . . . . 5 ⊢ (ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ V → (ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆 ↔ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆 ↔ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆)) |
12 | 8, 11 | mpbird 249 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆) |
13 | saliuncl.kct | . . . 4 ⊢ (𝜑 → 𝐾 ≼ ω) | |
14 | 1stcrestlem 21626 | . . . 4 ⊢ (𝐾 ≼ ω → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ≼ ω) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ≼ ω) |
16 | 5, 12, 15 | salunicl 41320 | . 2 ⊢ (𝜑 → ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝑆) |
17 | 4, 16 | eqeltrd 2906 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 Vcvv 3414 ⊆ wss 3798 𝒫 cpw 4378 ∪ cuni 4658 ∪ ciun 4740 class class class wbr 4873 ↦ cmpt 4952 ran crn 5343 ωcom 7326 ≼ cdom 8220 SAlgcsalg 41312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-card 9078 df-acn 9081 df-salg 41313 |
This theorem is referenced by: saliincl 41329 subsaliuncl 41360 meaiunlelem 41469 meaiuninclem 41481 meaiuninc3v 41485 meaiininclem 41487 caratheodory 41529 opnvonmbllem2 41634 ctvonmbl 41690 vonct 41694 smfaddlem2 41759 smflimlem1 41766 smfresal 41782 smfmullem4 41788 |
Copyright terms: Public domain | W3C validator |