Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > saliuncl | Structured version Visualization version GIF version |
Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saliuncl.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
saliuncl.kct | ⊢ (𝜑 → 𝐾 ≼ ω) |
saliuncl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
Ref | Expression |
---|---|
saliuncl | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | saliuncl.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
2 | 1 | ralrimiva 3107 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
3 | dfiun3g 5862 | . . 3 ⊢ (∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸)) |
5 | saliuncl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | eqid 2738 | . . . . . 6 ⊢ (𝑘 ∈ 𝐾 ↦ 𝐸) = (𝑘 ∈ 𝐾 ↦ 𝐸) | |
7 | 6 | rnmptss 6978 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆) |
9 | 5, 8 | ssexd 5243 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ V) |
10 | elpwg 4533 | . . . . 5 ⊢ (ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ V → (ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆 ↔ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆 ↔ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆)) |
12 | 8, 11 | mpbird 256 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆) |
13 | saliuncl.kct | . . . 4 ⊢ (𝜑 → 𝐾 ≼ ω) | |
14 | 1stcrestlem 22511 | . . . 4 ⊢ (𝐾 ≼ ω → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ≼ ω) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ≼ ω) |
16 | 5, 12, 15 | salunicl 43747 | . 2 ⊢ (𝜑 → ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝑆) |
17 | 4, 16 | eqeltrd 2839 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ∪ ciun 4921 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ωcom 7687 ≼ cdom 8689 SAlgcsalg 43739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-card 9628 df-acn 9631 df-salg 43740 |
This theorem is referenced by: saliincl 43756 subsaliuncl 43787 meaiunlelem 43896 meaiuninclem 43908 meaiuninc3v 43912 meaiininclem 43914 caratheodory 43956 opnvonmbllem2 44061 ctvonmbl 44117 vonct 44121 smfaddlem2 44186 smflimlem1 44193 smfresal 44209 smfmullem4 44215 |
Copyright terms: Public domain | W3C validator |