Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > saliuncl | Structured version Visualization version GIF version |
Description: SAlg sigma-algebra is closed under countable indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saliuncl.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
saliuncl.kct | ⊢ (𝜑 → 𝐾 ≼ ω) |
saliuncl.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
Ref | Expression |
---|---|
saliuncl | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | saliuncl.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
2 | 1 | ralrimiva 3103 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
3 | dfiun3g 5873 | . . 3 ⊢ (∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 = ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸)) |
5 | saliuncl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | eqid 2738 | . . . . . 6 ⊢ (𝑘 ∈ 𝐾 ↦ 𝐸) = (𝑘 ∈ 𝐾 ↦ 𝐸) | |
7 | 6 | rnmptss 6996 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐾 𝐸 ∈ 𝑆 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆) |
9 | 5, 8 | ssexd 5248 | . . . . 5 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ V) |
10 | elpwg 4536 | . . . . 5 ⊢ (ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ V → (ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆 ↔ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆 ↔ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ⊆ 𝑆)) |
12 | 8, 11 | mpbird 256 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝒫 𝑆) |
13 | saliuncl.kct | . . . 4 ⊢ (𝜑 → 𝐾 ≼ ω) | |
14 | 1stcrestlem 22603 | . . . 4 ⊢ (𝐾 ≼ ω → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ≼ ω) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → ran (𝑘 ∈ 𝐾 ↦ 𝐸) ≼ ω) |
16 | 5, 12, 15 | salunicl 43857 | . 2 ⊢ (𝜑 → ∪ ran (𝑘 ∈ 𝐾 ↦ 𝐸) ∈ 𝑆) |
17 | 4, 16 | eqeltrd 2839 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 ∪ ciun 4924 class class class wbr 5074 ↦ cmpt 5157 ran crn 5590 ωcom 7712 ≼ cdom 8731 SAlgcsalg 43849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-card 9697 df-acn 9700 df-salg 43850 |
This theorem is referenced by: saliincl 43866 subsaliuncl 43897 meaiunlelem 44006 meaiuninclem 44018 meaiuninc3v 44022 meaiininclem 44024 caratheodory 44066 opnvonmbllem2 44171 ctvonmbl 44227 vonct 44231 smfaddlem2 44299 smflimlem1 44306 smfresal 44322 smfmullem4 44328 |
Copyright terms: Public domain | W3C validator |