| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scutfo | Structured version Visualization version GIF version | ||
| Description: The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024.) |
| Ref | Expression |
|---|---|
| scutfo | ⊢ |s : <<s –onto→ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scutf 27753 | . 2 ⊢ |s : <<s ⟶ No | |
| 2 | lltropt 27817 | . . . . 5 ⊢ ( L ‘𝑥) <<s ( R ‘𝑥) | |
| 3 | df-br 5090 | . . . . 5 ⊢ (( L ‘𝑥) <<s ( R ‘𝑥) ↔ 〈( L ‘𝑥), ( R ‘𝑥)〉 ∈ <<s ) | |
| 4 | 2, 3 | mpbi 230 | . . . 4 ⊢ 〈( L ‘𝑥), ( R ‘𝑥)〉 ∈ <<s |
| 5 | lrcut 27849 | . . . . 5 ⊢ (𝑥 ∈ No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥) | |
| 6 | 5 | eqcomd 2737 | . . . 4 ⊢ (𝑥 ∈ No → 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) |
| 7 | fveq2 6822 | . . . . . 6 ⊢ (𝑦 = 〈( L ‘𝑥), ( R ‘𝑥)〉 → ( |s ‘𝑦) = ( |s ‘〈( L ‘𝑥), ( R ‘𝑥)〉)) | |
| 8 | df-ov 7349 | . . . . . 6 ⊢ (( L ‘𝑥) |s ( R ‘𝑥)) = ( |s ‘〈( L ‘𝑥), ( R ‘𝑥)〉) | |
| 9 | 7, 8 | eqtr4di 2784 | . . . . 5 ⊢ (𝑦 = 〈( L ‘𝑥), ( R ‘𝑥)〉 → ( |s ‘𝑦) = (( L ‘𝑥) |s ( R ‘𝑥))) |
| 10 | 9 | rspceeqv 3595 | . . . 4 ⊢ ((〈( L ‘𝑥), ( R ‘𝑥)〉 ∈ <<s ∧ 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)) |
| 11 | 4, 6, 10 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ No → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)) |
| 12 | 11 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ No ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦) |
| 13 | dffo3 7035 | . 2 ⊢ ( |s : <<s –onto→ No ↔ ( |s : <<s ⟶ No ∧ ∀𝑥 ∈ No ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))) | |
| 14 | 1, 12, 13 | mpbir2an 711 | 1 ⊢ |s : <<s –onto→ No |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 〈cop 4579 class class class wbr 5089 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 No csur 27578 <<s csslt 27720 |s cscut 27722 L cleft 27786 R cright 27787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-bday 27583 df-sslt 27721 df-scut 27723 df-made 27788 df-old 27789 df-left 27791 df-right 27792 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |