![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scutfo | Structured version Visualization version GIF version |
Description: The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024.) |
Ref | Expression |
---|---|
scutfo | ⊢ |s : <<s –onto→ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scutf 27658 | . 2 ⊢ |s : <<s ⟶ No | |
2 | lltropt 27712 | . . . . 5 ⊢ ( L ‘𝑥) <<s ( R ‘𝑥) | |
3 | df-br 5149 | . . . . 5 ⊢ (( L ‘𝑥) <<s ( R ‘𝑥) ↔ ⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s ) | |
4 | 2, 3 | mpbi 229 | . . . 4 ⊢ ⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s |
5 | lrcut 27742 | . . . . 5 ⊢ (𝑥 ∈ No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥) | |
6 | 5 | eqcomd 2737 | . . . 4 ⊢ (𝑥 ∈ No → 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) |
7 | fveq2 6891 | . . . . . 6 ⊢ (𝑦 = ⟨( L ‘𝑥), ( R ‘𝑥)⟩ → ( |s ‘𝑦) = ( |s ‘⟨( L ‘𝑥), ( R ‘𝑥)⟩)) | |
8 | df-ov 7415 | . . . . . 6 ⊢ (( L ‘𝑥) |s ( R ‘𝑥)) = ( |s ‘⟨( L ‘𝑥), ( R ‘𝑥)⟩) | |
9 | 7, 8 | eqtr4di 2789 | . . . . 5 ⊢ (𝑦 = ⟨( L ‘𝑥), ( R ‘𝑥)⟩ → ( |s ‘𝑦) = (( L ‘𝑥) |s ( R ‘𝑥))) |
10 | 9 | rspceeqv 3633 | . . . 4 ⊢ ((⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s ∧ 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)) |
11 | 4, 6, 10 | sylancr 586 | . . 3 ⊢ (𝑥 ∈ No → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)) |
12 | 11 | rgen 3062 | . 2 ⊢ ∀𝑥 ∈ No ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦) |
13 | dffo3 7103 | . 2 ⊢ ( |s : <<s –onto→ No ↔ ( |s : <<s ⟶ No ∧ ∀𝑥 ∈ No ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))) | |
14 | 1, 12, 13 | mpbir2an 708 | 1 ⊢ |s : <<s –onto→ No |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 ⟨cop 4634 class class class wbr 5148 ⟶wf 6539 –onto→wfo 6541 ‘cfv 6543 (class class class)co 7412 No csur 27486 <<s csslt 27626 |s cscut 27628 L cleft 27685 R cright 27686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-1o 8472 df-2o 8473 df-no 27489 df-slt 27490 df-bday 27491 df-sslt 27627 df-scut 27629 df-made 27687 df-old 27688 df-left 27690 df-right 27691 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |