Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scutfo | Structured version Visualization version GIF version |
Description: The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024.) |
Ref | Expression |
---|---|
scutfo | ⊢ |s : <<s –onto→ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scutf 33933 | . 2 ⊢ |s : <<s ⟶ No | |
2 | lltropt 33983 | . . . . 5 ⊢ (𝑥 ∈ No → ( L ‘𝑥) <<s ( R ‘𝑥)) | |
3 | df-br 5071 | . . . . 5 ⊢ (( L ‘𝑥) <<s ( R ‘𝑥) ↔ 〈( L ‘𝑥), ( R ‘𝑥)〉 ∈ <<s ) | |
4 | 2, 3 | sylib 217 | . . . 4 ⊢ (𝑥 ∈ No → 〈( L ‘𝑥), ( R ‘𝑥)〉 ∈ <<s ) |
5 | lrcut 34010 | . . . . 5 ⊢ (𝑥 ∈ No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥) | |
6 | 5 | eqcomd 2744 | . . . 4 ⊢ (𝑥 ∈ No → 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) |
7 | fveq2 6756 | . . . . . 6 ⊢ (𝑦 = 〈( L ‘𝑥), ( R ‘𝑥)〉 → ( |s ‘𝑦) = ( |s ‘〈( L ‘𝑥), ( R ‘𝑥)〉)) | |
8 | df-ov 7258 | . . . . . 6 ⊢ (( L ‘𝑥) |s ( R ‘𝑥)) = ( |s ‘〈( L ‘𝑥), ( R ‘𝑥)〉) | |
9 | 7, 8 | eqtr4di 2797 | . . . . 5 ⊢ (𝑦 = 〈( L ‘𝑥), ( R ‘𝑥)〉 → ( |s ‘𝑦) = (( L ‘𝑥) |s ( R ‘𝑥))) |
10 | 9 | rspceeqv 3567 | . . . 4 ⊢ ((〈( L ‘𝑥), ( R ‘𝑥)〉 ∈ <<s ∧ 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)) |
11 | 4, 6, 10 | syl2anc 583 | . . 3 ⊢ (𝑥 ∈ No → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)) |
12 | 11 | rgen 3073 | . 2 ⊢ ∀𝑥 ∈ No ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦) |
13 | dffo3 6960 | . 2 ⊢ ( |s : <<s –onto→ No ↔ ( |s : <<s ⟶ No ∧ ∀𝑥 ∈ No ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))) | |
14 | 1, 12, 13 | mpbir2an 707 | 1 ⊢ |s : <<s –onto→ No |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 〈cop 4564 class class class wbr 5070 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 (class class class)co 7255 No csur 33770 <<s csslt 33902 |s cscut 33904 L cleft 33956 R cright 33957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-bday 33775 df-sslt 33903 df-scut 33905 df-made 33958 df-old 33959 df-left 33961 df-right 33962 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |