MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutfo Structured version   Visualization version   GIF version

Theorem scutfo 27743
Description: The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024.)
Assertion
Ref Expression
scutfo |s : <<s –onto No

Proof of Theorem scutfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scutf 27658 . 2 |s : <<s ⟶ No
2 lltropt 27712 . . . . 5 ( L ‘𝑥) <<s ( R ‘𝑥)
3 df-br 5149 . . . . 5 (( L ‘𝑥) <<s ( R ‘𝑥) ↔ ⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s )
42, 3mpbi 229 . . . 4 ⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s
5 lrcut 27742 . . . . 5 (𝑥 No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
65eqcomd 2737 . . . 4 (𝑥 No 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥)))
7 fveq2 6891 . . . . . 6 (𝑦 = ⟨( L ‘𝑥), ( R ‘𝑥)⟩ → ( |s ‘𝑦) = ( |s ‘⟨( L ‘𝑥), ( R ‘𝑥)⟩))
8 df-ov 7415 . . . . . 6 (( L ‘𝑥) |s ( R ‘𝑥)) = ( |s ‘⟨( L ‘𝑥), ( R ‘𝑥)⟩)
97, 8eqtr4di 2789 . . . . 5 (𝑦 = ⟨( L ‘𝑥), ( R ‘𝑥)⟩ → ( |s ‘𝑦) = (( L ‘𝑥) |s ( R ‘𝑥)))
109rspceeqv 3633 . . . 4 ((⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s ∧ 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))
114, 6, 10sylancr 586 . . 3 (𝑥 No → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))
1211rgen 3062 . 2 𝑥 No 𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)
13 dffo3 7103 . 2 ( |s : <<s –onto No ↔ ( |s : <<s ⟶ No ∧ ∀𝑥 No 𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)))
141, 12, 13mpbir2an 708 1 |s : <<s –onto No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  wral 3060  wrex 3069  cop 4634   class class class wbr 5148  wf 6539  ontowfo 6541  cfv 6543  (class class class)co 7412   No csur 27486   <<s csslt 27626   |s cscut 27628   L cleft 27685   R cright 27686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-1o 8472  df-2o 8473  df-no 27489  df-slt 27490  df-bday 27491  df-sslt 27627  df-scut 27629  df-made 27687  df-old 27688  df-left 27690  df-right 27691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator