| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scutfo | Structured version Visualization version GIF version | ||
| Description: The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024.) |
| Ref | Expression |
|---|---|
| scutfo | ⊢ |s : <<s –onto→ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scutf 27858 | . 2 ⊢ |s : <<s ⟶ No | |
| 2 | lltropt 27912 | . . . . 5 ⊢ ( L ‘𝑥) <<s ( R ‘𝑥) | |
| 3 | df-br 5143 | . . . . 5 ⊢ (( L ‘𝑥) <<s ( R ‘𝑥) ↔ 〈( L ‘𝑥), ( R ‘𝑥)〉 ∈ <<s ) | |
| 4 | 2, 3 | mpbi 230 | . . . 4 ⊢ 〈( L ‘𝑥), ( R ‘𝑥)〉 ∈ <<s |
| 5 | lrcut 27942 | . . . . 5 ⊢ (𝑥 ∈ No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥) | |
| 6 | 5 | eqcomd 2742 | . . . 4 ⊢ (𝑥 ∈ No → 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) |
| 7 | fveq2 6905 | . . . . . 6 ⊢ (𝑦 = 〈( L ‘𝑥), ( R ‘𝑥)〉 → ( |s ‘𝑦) = ( |s ‘〈( L ‘𝑥), ( R ‘𝑥)〉)) | |
| 8 | df-ov 7435 | . . . . . 6 ⊢ (( L ‘𝑥) |s ( R ‘𝑥)) = ( |s ‘〈( L ‘𝑥), ( R ‘𝑥)〉) | |
| 9 | 7, 8 | eqtr4di 2794 | . . . . 5 ⊢ (𝑦 = 〈( L ‘𝑥), ( R ‘𝑥)〉 → ( |s ‘𝑦) = (( L ‘𝑥) |s ( R ‘𝑥))) |
| 10 | 9 | rspceeqv 3644 | . . . 4 ⊢ ((〈( L ‘𝑥), ( R ‘𝑥)〉 ∈ <<s ∧ 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)) |
| 11 | 4, 6, 10 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ No → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)) |
| 12 | 11 | rgen 3062 | . 2 ⊢ ∀𝑥 ∈ No ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦) |
| 13 | dffo3 7121 | . 2 ⊢ ( |s : <<s –onto→ No ↔ ( |s : <<s ⟶ No ∧ ∀𝑥 ∈ No ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))) | |
| 14 | 1, 12, 13 | mpbir2an 711 | 1 ⊢ |s : <<s –onto→ No |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 〈cop 4631 class class class wbr 5142 ⟶wf 6556 –onto→wfo 6558 ‘cfv 6560 (class class class)co 7432 No csur 27685 <<s csslt 27826 |s cscut 27828 L cleft 27885 R cright 27886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-1o 8507 df-2o 8508 df-no 27688 df-slt 27689 df-bday 27690 df-sslt 27827 df-scut 27829 df-made 27887 df-old 27888 df-left 27890 df-right 27891 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |