MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutfo Structured version   Visualization version   GIF version

Theorem scutfo 27943
Description: The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024.)
Assertion
Ref Expression
scutfo |s : <<s –onto No

Proof of Theorem scutfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scutf 27858 . 2 |s : <<s ⟶ No
2 lltropt 27912 . . . . 5 ( L ‘𝑥) <<s ( R ‘𝑥)
3 df-br 5143 . . . . 5 (( L ‘𝑥) <<s ( R ‘𝑥) ↔ ⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s )
42, 3mpbi 230 . . . 4 ⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s
5 lrcut 27942 . . . . 5 (𝑥 No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
65eqcomd 2742 . . . 4 (𝑥 No 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥)))
7 fveq2 6905 . . . . . 6 (𝑦 = ⟨( L ‘𝑥), ( R ‘𝑥)⟩ → ( |s ‘𝑦) = ( |s ‘⟨( L ‘𝑥), ( R ‘𝑥)⟩))
8 df-ov 7435 . . . . . 6 (( L ‘𝑥) |s ( R ‘𝑥)) = ( |s ‘⟨( L ‘𝑥), ( R ‘𝑥)⟩)
97, 8eqtr4di 2794 . . . . 5 (𝑦 = ⟨( L ‘𝑥), ( R ‘𝑥)⟩ → ( |s ‘𝑦) = (( L ‘𝑥) |s ( R ‘𝑥)))
109rspceeqv 3644 . . . 4 ((⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s ∧ 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))
114, 6, 10sylancr 587 . . 3 (𝑥 No → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))
1211rgen 3062 . 2 𝑥 No 𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)
13 dffo3 7121 . 2 ( |s : <<s –onto No ↔ ( |s : <<s ⟶ No ∧ ∀𝑥 No 𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)))
141, 12, 13mpbir2an 711 1 |s : <<s –onto No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  wral 3060  wrex 3069  cop 4631   class class class wbr 5142  wf 6556  ontowfo 6558  cfv 6560  (class class class)co 7432   No csur 27685   <<s csslt 27826   |s cscut 27828   L cleft 27885   R cright 27886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-1o 8507  df-2o 8508  df-no 27688  df-slt 27689  df-bday 27690  df-sslt 27827  df-scut 27829  df-made 27887  df-old 27888  df-left 27890  df-right 27891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator