MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutfo Structured version   Visualization version   GIF version

Theorem scutfo 27873
Description: The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024.)
Assertion
Ref Expression
scutfo |s : <<s –onto No

Proof of Theorem scutfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scutf 27781 . 2 |s : <<s ⟶ No
2 lltropt 27841 . . . . 5 ( L ‘𝑥) <<s ( R ‘𝑥)
3 df-br 5125 . . . . 5 (( L ‘𝑥) <<s ( R ‘𝑥) ↔ ⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s )
42, 3mpbi 230 . . . 4 ⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s
5 lrcut 27872 . . . . 5 (𝑥 No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
65eqcomd 2742 . . . 4 (𝑥 No 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥)))
7 fveq2 6881 . . . . . 6 (𝑦 = ⟨( L ‘𝑥), ( R ‘𝑥)⟩ → ( |s ‘𝑦) = ( |s ‘⟨( L ‘𝑥), ( R ‘𝑥)⟩))
8 df-ov 7413 . . . . . 6 (( L ‘𝑥) |s ( R ‘𝑥)) = ( |s ‘⟨( L ‘𝑥), ( R ‘𝑥)⟩)
97, 8eqtr4di 2789 . . . . 5 (𝑦 = ⟨( L ‘𝑥), ( R ‘𝑥)⟩ → ( |s ‘𝑦) = (( L ‘𝑥) |s ( R ‘𝑥)))
109rspceeqv 3629 . . . 4 ((⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s ∧ 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))
114, 6, 10sylancr 587 . . 3 (𝑥 No → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))
1211rgen 3054 . 2 𝑥 No 𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)
13 dffo3 7097 . 2 ( |s : <<s –onto No ↔ ( |s : <<s ⟶ No ∧ ∀𝑥 No 𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)))
141, 12, 13mpbir2an 711 1 |s : <<s –onto No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wral 3052  wrex 3061  cop 4612   class class class wbr 5124  wf 6532  ontowfo 6534  cfv 6536  (class class class)co 7410   No csur 27608   <<s csslt 27749   |s cscut 27751   L cleft 27810   R cright 27811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752  df-made 27812  df-old 27813  df-left 27815  df-right 27816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator