| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scutfo | Structured version Visualization version GIF version | ||
| Description: The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024.) |
| Ref | Expression |
|---|---|
| scutfo | ⊢ |s : <<s –onto→ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scutf 27730 | . 2 ⊢ |s : <<s ⟶ No | |
| 2 | lltropt 27790 | . . . . 5 ⊢ ( L ‘𝑥) <<s ( R ‘𝑥) | |
| 3 | df-br 5110 | . . . . 5 ⊢ (( L ‘𝑥) <<s ( R ‘𝑥) ↔ 〈( L ‘𝑥), ( R ‘𝑥)〉 ∈ <<s ) | |
| 4 | 2, 3 | mpbi 230 | . . . 4 ⊢ 〈( L ‘𝑥), ( R ‘𝑥)〉 ∈ <<s |
| 5 | lrcut 27821 | . . . . 5 ⊢ (𝑥 ∈ No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥) | |
| 6 | 5 | eqcomd 2736 | . . . 4 ⊢ (𝑥 ∈ No → 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) |
| 7 | fveq2 6860 | . . . . . 6 ⊢ (𝑦 = 〈( L ‘𝑥), ( R ‘𝑥)〉 → ( |s ‘𝑦) = ( |s ‘〈( L ‘𝑥), ( R ‘𝑥)〉)) | |
| 8 | df-ov 7392 | . . . . . 6 ⊢ (( L ‘𝑥) |s ( R ‘𝑥)) = ( |s ‘〈( L ‘𝑥), ( R ‘𝑥)〉) | |
| 9 | 7, 8 | eqtr4di 2783 | . . . . 5 ⊢ (𝑦 = 〈( L ‘𝑥), ( R ‘𝑥)〉 → ( |s ‘𝑦) = (( L ‘𝑥) |s ( R ‘𝑥))) |
| 10 | 9 | rspceeqv 3614 | . . . 4 ⊢ ((〈( L ‘𝑥), ( R ‘𝑥)〉 ∈ <<s ∧ 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)) |
| 11 | 4, 6, 10 | sylancr 587 | . . 3 ⊢ (𝑥 ∈ No → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)) |
| 12 | 11 | rgen 3047 | . 2 ⊢ ∀𝑥 ∈ No ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦) |
| 13 | dffo3 7076 | . 2 ⊢ ( |s : <<s –onto→ No ↔ ( |s : <<s ⟶ No ∧ ∀𝑥 ∈ No ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))) | |
| 14 | 1, 12, 13 | mpbir2an 711 | 1 ⊢ |s : <<s –onto→ No |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 〈cop 4597 class class class wbr 5109 ⟶wf 6509 –onto→wfo 6511 ‘cfv 6513 (class class class)co 7389 No csur 27557 <<s csslt 27698 |s cscut 27700 L cleft 27759 R cright 27760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-1o 8436 df-2o 8437 df-no 27560 df-slt 27561 df-bday 27562 df-sslt 27699 df-scut 27701 df-made 27761 df-old 27762 df-left 27764 df-right 27765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |