MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutfo Structured version   Visualization version   GIF version

Theorem scutfo 27957
Description: The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024.)
Assertion
Ref Expression
scutfo |s : <<s –onto No

Proof of Theorem scutfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scutf 27872 . 2 |s : <<s ⟶ No
2 lltropt 27926 . . . . 5 ( L ‘𝑥) <<s ( R ‘𝑥)
3 df-br 5149 . . . . 5 (( L ‘𝑥) <<s ( R ‘𝑥) ↔ ⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s )
42, 3mpbi 230 . . . 4 ⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s
5 lrcut 27956 . . . . 5 (𝑥 No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
65eqcomd 2741 . . . 4 (𝑥 No 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥)))
7 fveq2 6907 . . . . . 6 (𝑦 = ⟨( L ‘𝑥), ( R ‘𝑥)⟩ → ( |s ‘𝑦) = ( |s ‘⟨( L ‘𝑥), ( R ‘𝑥)⟩))
8 df-ov 7434 . . . . . 6 (( L ‘𝑥) |s ( R ‘𝑥)) = ( |s ‘⟨( L ‘𝑥), ( R ‘𝑥)⟩)
97, 8eqtr4di 2793 . . . . 5 (𝑦 = ⟨( L ‘𝑥), ( R ‘𝑥)⟩ → ( |s ‘𝑦) = (( L ‘𝑥) |s ( R ‘𝑥)))
109rspceeqv 3645 . . . 4 ((⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s ∧ 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))
114, 6, 10sylancr 587 . . 3 (𝑥 No → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))
1211rgen 3061 . 2 𝑥 No 𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)
13 dffo3 7122 . 2 ( |s : <<s –onto No ↔ ( |s : <<s ⟶ No ∧ ∀𝑥 No 𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)))
141, 12, 13mpbir2an 711 1 |s : <<s –onto No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  wral 3059  wrex 3068  cop 4637   class class class wbr 5148  wf 6559  ontowfo 6561  cfv 6563  (class class class)co 7431   No csur 27699   <<s csslt 27840   |s cscut 27842   L cleft 27899   R cright 27900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704  df-sslt 27841  df-scut 27843  df-made 27901  df-old 27902  df-left 27904  df-right 27905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator