Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scutfo Structured version   Visualization version   GIF version

Theorem scutfo 34084
Description: The surreal cut function is onto. (Contributed by Scott Fenton, 23-Aug-2024.)
Assertion
Ref Expression
scutfo |s : <<s –onto No

Proof of Theorem scutfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scutf 34006 . 2 |s : <<s ⟶ No
2 lltropt 34056 . . . . 5 (𝑥 No → ( L ‘𝑥) <<s ( R ‘𝑥))
3 df-br 5075 . . . . 5 (( L ‘𝑥) <<s ( R ‘𝑥) ↔ ⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s )
42, 3sylib 217 . . . 4 (𝑥 No → ⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s )
5 lrcut 34083 . . . . 5 (𝑥 No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
65eqcomd 2744 . . . 4 (𝑥 No 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥)))
7 fveq2 6774 . . . . . 6 (𝑦 = ⟨( L ‘𝑥), ( R ‘𝑥)⟩ → ( |s ‘𝑦) = ( |s ‘⟨( L ‘𝑥), ( R ‘𝑥)⟩))
8 df-ov 7278 . . . . . 6 (( L ‘𝑥) |s ( R ‘𝑥)) = ( |s ‘⟨( L ‘𝑥), ( R ‘𝑥)⟩)
97, 8eqtr4di 2796 . . . . 5 (𝑦 = ⟨( L ‘𝑥), ( R ‘𝑥)⟩ → ( |s ‘𝑦) = (( L ‘𝑥) |s ( R ‘𝑥)))
109rspceeqv 3575 . . . 4 ((⟨( L ‘𝑥), ( R ‘𝑥)⟩ ∈ <<s ∧ 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))
114, 6, 10syl2anc 584 . . 3 (𝑥 No → ∃𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦))
1211rgen 3074 . 2 𝑥 No 𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)
13 dffo3 6978 . 2 ( |s : <<s –onto No ↔ ( |s : <<s ⟶ No ∧ ∀𝑥 No 𝑦 ∈ <<s 𝑥 = ( |s ‘𝑦)))
141, 12, 13mpbir2an 708 1 |s : <<s –onto No
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cop 4567   class class class wbr 5074  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275   No csur 33843   <<s csslt 33975   |s cscut 33977   L cleft 34029   R cright 34030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848  df-sslt 33976  df-scut 33978  df-made 34031  df-old 34032  df-left 34034  df-right 34035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator