Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fict | Structured version Visualization version GIF version |
Description: A finite set is countable (weaker version of isfinite 9133). (Contributed by Thierry Arnoux, 27-Mar-2018.) |
Ref | Expression |
---|---|
fict | ⊢ (𝐴 ∈ Fin → 𝐴 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfinite 9133 | . 2 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) | |
2 | sdomdom 8548 | . 2 ⊢ (𝐴 ≺ ω → 𝐴 ≼ ω) | |
3 | 1, 2 | sylbi 220 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 class class class wbr 5025 ωcom 7572 ≼ cdom 8518 ≺ csdm 8519 Fincfn 8520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-inf2 9122 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-ral 3073 df-rex 3074 df-reu 3075 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-int 4832 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-om 7573 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-er 8292 df-en 8521 df-dom 8522 df-sdom 8523 df-fin 8524 |
This theorem is referenced by: unirnfdomd 10012 cfpwsdom 10029 ovolfi 24179 fz1nnct 30633 sigaclfu 31591 sigapisys 31627 mpct 42185 salexct 43325 salexct3 43333 salgencntex 43334 salgensscntex 43335 hoimbllem 43620 |
Copyright terms: Public domain | W3C validator |