![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsmstset | Structured version Visualization version GIF version |
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
setsms.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
Ref | Expression |
---|---|
setsmstset | ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsms.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
2 | fvex 6914 | . . 3 ⊢ (MetOpen‘𝐷) ∈ V | |
3 | tsetid 17367 | . . . 4 ⊢ TopSet = Slot (TopSet‘ndx) | |
4 | 3 | setsid 17210 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (MetOpen‘𝐷) ∈ V) → (MetOpen‘𝐷) = (TopSet‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
5 | 1, 2, 4 | sylancl 584 | . 2 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
6 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
7 | 6 | fveq2d 6905 | . 2 ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
8 | 5, 7 | eqtr4d 2769 | 1 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3462 〈cop 4639 × cxp 5680 ↾ cres 5684 ‘cfv 6554 (class class class)co 7424 sSet csts 17165 ndxcnx 17195 Basecbs 17213 TopSetcts 17272 distcds 17275 MetOpencmopn 21333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-1cn 11216 ax-addcl 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-sets 17166 df-slot 17184 df-ndx 17196 df-tset 17285 |
This theorem is referenced by: setsmstopn 24477 |
Copyright terms: Public domain | W3C validator |