![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsmstset | Structured version Visualization version GIF version |
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
setsms.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
Ref | Expression |
---|---|
setsmstset | ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsms.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
2 | fvex 6927 | . . 3 ⊢ (MetOpen‘𝐷) ∈ V | |
3 | tsetid 17408 | . . . 4 ⊢ TopSet = Slot (TopSet‘ndx) | |
4 | 3 | setsid 17251 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (MetOpen‘𝐷) ∈ V) → (MetOpen‘𝐷) = (TopSet‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
5 | 1, 2, 4 | sylancl 586 | . 2 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
6 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
7 | 6 | fveq2d 6918 | . 2 ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
8 | 5, 7 | eqtr4d 2780 | 1 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3481 〈cop 4640 × cxp 5691 ↾ cres 5695 ‘cfv 6569 (class class class)co 7438 sSet csts 17206 ndxcnx 17236 Basecbs 17254 TopSetcts 17313 distcds 17316 MetOpencmopn 21381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-1cn 11220 ax-addcl 11222 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-sets 17207 df-slot 17225 df-ndx 17237 df-tset 17326 |
This theorem is referenced by: setsmstopn 24515 |
Copyright terms: Public domain | W3C validator |