MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsmstset Structured version   Visualization version   GIF version

Theorem setsmstset 23632
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsms.m (𝜑𝑀𝑉)
Assertion
Ref Expression
setsmstset (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾))

Proof of Theorem setsmstset
StepHypRef Expression
1 setsms.m . . 3 (𝜑𝑀𝑉)
2 fvex 6787 . . 3 (MetOpen‘𝐷) ∈ V
3 tsetid 17063 . . . 4 TopSet = Slot (TopSet‘ndx)
43setsid 16909 . . 3 ((𝑀𝑉 ∧ (MetOpen‘𝐷) ∈ V) → (MetOpen‘𝐷) = (TopSet‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
51, 2, 4sylancl 586 . 2 (𝜑 → (MetOpen‘𝐷) = (TopSet‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
6 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
76fveq2d 6778 . 2 (𝜑 → (TopSet‘𝐾) = (TopSet‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
85, 7eqtr4d 2781 1 (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567   × cxp 5587  cres 5591  cfv 6433  (class class class)co 7275   sSet csts 16864  ndxcnx 16894  Basecbs 16912  TopSetcts 16968  distcds 16971  MetOpencmopn 20587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-sets 16865  df-slot 16883  df-ndx 16895  df-tset 16981
This theorem is referenced by:  setsmstopn  23633
  Copyright terms: Public domain W3C validator