MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsetid Structured version   Visualization version   GIF version

Theorem tsetid 17323
Description: Utility theorem: index-independent form of df-tset 17246. (Contributed by NM, 20-Oct-2012.)
Assertion
Ref Expression
tsetid TopSet = Slot (TopSet‘ndx)

Proof of Theorem tsetid
StepHypRef Expression
1 df-tset 17246 . 2 TopSet = Slot 9
2 9nn 12291 . 2 9 ∈ ℕ
31, 2ndxid 17174 1 TopSet = Slot (TopSet‘ndx)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cfv 6514  9c9 12255  Slot cslot 17158  ndxcnx 17170  TopSetcts 17233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-slot 17159  df-ndx 17171  df-tset 17246
This theorem is referenced by:  topgrptset  17334  resstset  17335  otpstset  17348  odrngtset  17377  prdstset  17436  imastset  17492  ipotset  18499  oppgtset  19291  mgptset  20063  sratset  21097  cnfldtset  21281  cnfldtsetOLD  21294  eltpsg  22837  indistpsALT  22907  resstopn  23080  tuslem  24161  setsmstset  24372  tngtset  24544  nrgtrg  24585  idlsrgtset  33486  zlmtset  33960
  Copyright terms: Public domain W3C validator