HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shlej1i Structured version   Visualization version   GIF version

Theorem shlej1i 31265
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
shincl.1 𝐴S
shincl.2 𝐵S
shless.1 𝐶S
Assertion
Ref Expression
shlej1i (𝐴𝐵 → (𝐴 𝐶) ⊆ (𝐵 𝐶))

Proof of Theorem shlej1i
StepHypRef Expression
1 shincl.1 . 2 𝐴S
2 shincl.2 . 2 𝐵S
3 shless.1 . 2 𝐶S
4 shlej1 31247 . . 3 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 𝐶) ⊆ (𝐵 𝐶))
54ex 411 . 2 ((𝐴S𝐵S𝐶S ) → (𝐴𝐵 → (𝐴 𝐶) ⊆ (𝐵 𝐶)))
61, 2, 3, 5mp3an 1457 1 (𝐴𝐵 → (𝐴 𝐶) ⊆ (𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084  wcel 2098  wss 3944  (class class class)co 7419   S csh 30815   chj 30820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-hilex 30886  ax-hfvadd 30887  ax-hv0cl 30890  ax-hfvmul 30892  ax-hvmul0 30897  ax-hfi 30966  ax-his2 30970  ax-his3 30971
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-ltxr 11290  df-sh 31094  df-oc 31139  df-chj 31197
This theorem is referenced by:  shlej2i  31266  chlej1i  31360  5oai  31548
  Copyright terms: Public domain W3C validator