HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shlessi Structured version   Visualization version   GIF version

Theorem shlessi 31325
Description: Subset implies subset of subspace sum. (Contributed by NM, 18-Nov-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
shincl.1 𝐴S
shincl.2 𝐵S
shless.1 𝐶S
Assertion
Ref Expression
shlessi (𝐴𝐵 → (𝐴 + 𝐶) ⊆ (𝐵 + 𝐶))

Proof of Theorem shlessi
StepHypRef Expression
1 shincl.1 . 2 𝐴S
2 shincl.2 . 2 𝐵S
3 shless.1 . 2 𝐶S
4 shless 31307 . . 3 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐴 + 𝐶) ⊆ (𝐵 + 𝐶))
54ex 412 . 2 ((𝐴S𝐵S𝐶S ) → (𝐴𝐵 → (𝐴 + 𝐶) ⊆ (𝐵 + 𝐶)))
61, 2, 3, 5mp3an 1462 1 (𝐴𝐵 → (𝐴 + 𝐶) ⊆ (𝐵 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2107  wss 3931  (class class class)co 7413   S csh 30876   + cph 30879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-hilex 30947  ax-hfvadd 30948  ax-hvcom 30949  ax-hvass 30950  ax-hv0cl 30951  ax-hvaddid 30952  ax-hfvmul 30953  ax-hvmulid 30954  ax-hvdistr2 30957  ax-hvmul0 30958
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-ltxr 11282  df-sub 11476  df-neg 11477  df-grpo 30441  df-ablo 30493  df-hvsub 30919  df-sh 31155  df-shs 31256
This theorem is referenced by:  shslubi  31333  osumcor2i  31592  mayete3i  31676
  Copyright terms: Public domain W3C validator