| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0sltp1le | Structured version Visualization version GIF version | ||
| Description: Non-negative surreal ordering relation. (Contributed by Scott Fenton, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| n0sltp1le | ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑀 +s 1s ) ≤s 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0subs2 28306 | . . 3 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕs)) | |
| 2 | nnsge1 28287 | . . . 4 ⊢ ((𝑁 -s 𝑀) ∈ ℕs → 1s ≤s (𝑁 -s 𝑀)) | |
| 3 | 1sno 27791 | . . . . . . 7 ⊢ 1s ∈ No | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → 1s ∈ No ) |
| 5 | simpr 484 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → 𝑁 ∈ ℕ0s) | |
| 6 | n0sno 28268 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0s → 𝑁 ∈ No ) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → 𝑁 ∈ No ) |
| 8 | n0sno 28268 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ0s → 𝑀 ∈ No ) | |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → 𝑀 ∈ No ) |
| 10 | 7, 9 | subscld 28019 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑁 -s 𝑀) ∈ No ) |
| 11 | 4, 10, 9 | sleadd2d 27955 | . . . . 5 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → ( 1s ≤s (𝑁 -s 𝑀) ↔ (𝑀 +s 1s ) ≤s (𝑀 +s (𝑁 -s 𝑀)))) |
| 12 | pncan3s 28029 | . . . . . . 7 ⊢ ((𝑀 ∈ No ∧ 𝑁 ∈ No ) → (𝑀 +s (𝑁 -s 𝑀)) = 𝑁) | |
| 13 | 8, 6, 12 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 +s (𝑁 -s 𝑀)) = 𝑁) |
| 14 | 13 | breq2d 5131 | . . . . 5 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → ((𝑀 +s 1s ) ≤s (𝑀 +s (𝑁 -s 𝑀)) ↔ (𝑀 +s 1s ) ≤s 𝑁)) |
| 15 | 11, 14 | bitrd 279 | . . . 4 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → ( 1s ≤s (𝑁 -s 𝑀) ↔ (𝑀 +s 1s ) ≤s 𝑁)) |
| 16 | 2, 15 | imbitrid 244 | . . 3 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → ((𝑁 -s 𝑀) ∈ ℕs → (𝑀 +s 1s ) ≤s 𝑁)) |
| 17 | 1, 16 | sylbid 240 | . 2 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 → (𝑀 +s 1s ) ≤s 𝑁)) |
| 18 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 ∈ No ) |
| 19 | peano2no 27943 | . . . . 5 ⊢ (𝑀 ∈ No → (𝑀 +s 1s ) ∈ No ) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ (((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → (𝑀 +s 1s ) ∈ No ) |
| 21 | 6 | ad2antlr 727 | . . . 4 ⊢ (((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑁 ∈ No ) |
| 22 | 18 | sltp1d 27974 | . . . 4 ⊢ (((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 <s (𝑀 +s 1s )) |
| 23 | simpr 484 | . . . 4 ⊢ (((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → (𝑀 +s 1s ) ≤s 𝑁) | |
| 24 | 18, 20, 21, 22, 23 | sltletrd 27724 | . . 3 ⊢ (((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 <s 𝑁) |
| 25 | 24 | ex 412 | . 2 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → ((𝑀 +s 1s ) ≤s 𝑁 → 𝑀 <s 𝑁)) |
| 26 | 17, 25 | impbid 212 | 1 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑀 +s 1s ) ≤s 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 No csur 27603 <s cslt 27604 ≤s csle 27708 1s c1s 27787 +s cadds 27918 -s csubs 27978 ℕ0scnn0s 28258 ℕscnns 28259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-nadd 8678 df-no 27606 df-slt 27607 df-bday 27608 df-sle 27709 df-sslt 27745 df-scut 27747 df-0s 27788 df-1s 27789 df-made 27807 df-old 27808 df-left 27810 df-right 27811 df-norec 27897 df-norec2 27908 df-adds 27919 df-negs 27979 df-subs 27980 df-n0s 28260 df-nns 28261 |
| This theorem is referenced by: n0sleltp1 28308 |
| Copyright terms: Public domain | W3C validator |