| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0sltp1le | Structured version Visualization version GIF version | ||
| Description: Non-negative surreal ordering relation. (Contributed by Scott Fenton, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| n0sltp1le | ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑀 +s 1s ) ≤s 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0subs2 28295 | . . 3 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕs)) | |
| 2 | nnsge1 28276 | . . . 4 ⊢ ((𝑁 -s 𝑀) ∈ ℕs → 1s ≤s (𝑁 -s 𝑀)) | |
| 3 | 1sno 27777 | . . . . . . 7 ⊢ 1s ∈ No | |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → 1s ∈ No ) |
| 5 | simpr 484 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → 𝑁 ∈ ℕ0s) | |
| 6 | n0sno 28257 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0s → 𝑁 ∈ No ) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → 𝑁 ∈ No ) |
| 8 | n0sno 28257 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ0s → 𝑀 ∈ No ) | |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → 𝑀 ∈ No ) |
| 10 | 7, 9 | subscld 28008 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑁 -s 𝑀) ∈ No ) |
| 11 | 4, 10, 9 | sleadd2d 27944 | . . . . 5 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → ( 1s ≤s (𝑁 -s 𝑀) ↔ (𝑀 +s 1s ) ≤s (𝑀 +s (𝑁 -s 𝑀)))) |
| 12 | pncan3s 28018 | . . . . . . 7 ⊢ ((𝑀 ∈ No ∧ 𝑁 ∈ No ) → (𝑀 +s (𝑁 -s 𝑀)) = 𝑁) | |
| 13 | 8, 6, 12 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 +s (𝑁 -s 𝑀)) = 𝑁) |
| 14 | 13 | breq2d 5114 | . . . . 5 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → ((𝑀 +s 1s ) ≤s (𝑀 +s (𝑁 -s 𝑀)) ↔ (𝑀 +s 1s ) ≤s 𝑁)) |
| 15 | 11, 14 | bitrd 279 | . . . 4 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → ( 1s ≤s (𝑁 -s 𝑀) ↔ (𝑀 +s 1s ) ≤s 𝑁)) |
| 16 | 2, 15 | imbitrid 244 | . . 3 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → ((𝑁 -s 𝑀) ∈ ℕs → (𝑀 +s 1s ) ≤s 𝑁)) |
| 17 | 1, 16 | sylbid 240 | . 2 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 → (𝑀 +s 1s ) ≤s 𝑁)) |
| 18 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 ∈ No ) |
| 19 | peano2no 27932 | . . . . 5 ⊢ (𝑀 ∈ No → (𝑀 +s 1s ) ∈ No ) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ (((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → (𝑀 +s 1s ) ∈ No ) |
| 21 | 6 | ad2antlr 727 | . . . 4 ⊢ (((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑁 ∈ No ) |
| 22 | 18 | sltp1d 27963 | . . . 4 ⊢ (((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 <s (𝑀 +s 1s )) |
| 23 | simpr 484 | . . . 4 ⊢ (((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → (𝑀 +s 1s ) ≤s 𝑁) | |
| 24 | 18, 20, 21, 22, 23 | sltletrd 27706 | . . 3 ⊢ (((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 <s 𝑁) |
| 25 | 24 | ex 412 | . 2 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → ((𝑀 +s 1s ) ≤s 𝑁 → 𝑀 <s 𝑁)) |
| 26 | 17, 25 | impbid 212 | 1 ⊢ ((𝑀 ∈ ℕ0s ∧ 𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑀 +s 1s ) ≤s 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 No csur 27585 <s cslt 27586 ≤s csle 27690 1s c1s 27773 +s cadds 27907 -s csubs 27967 ℕ0scnn0s 28247 ℕscnns 28248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-nadd 8607 df-no 27588 df-slt 27589 df-bday 27590 df-sle 27691 df-sslt 27728 df-scut 27730 df-0s 27774 df-1s 27775 df-made 27793 df-old 27794 df-left 27796 df-right 27797 df-norec 27886 df-norec2 27897 df-adds 27908 df-negs 27968 df-subs 27969 df-n0s 28249 df-nns 28250 |
| This theorem is referenced by: n0sleltp1 28297 |
| Copyright terms: Public domain | W3C validator |