MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sltp1le Structured version   Visualization version   GIF version

Theorem n0sltp1le 28307
Description: Non-negative surreal ordering relation. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
n0sltp1le ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑀 +s 1s ) ≤s 𝑁))

Proof of Theorem n0sltp1le
StepHypRef Expression
1 n0subs2 28306 . . 3 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕs))
2 nnsge1 28287 . . . 4 ((𝑁 -s 𝑀) ∈ ℕs → 1s ≤s (𝑁 -s 𝑀))
3 1sno 27791 . . . . . . 7 1s No
43a1i 11 . . . . . 6 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 1s No )
5 simpr 484 . . . . . . . 8 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑁 ∈ ℕ0s)
6 n0sno 28268 . . . . . . . 8 (𝑁 ∈ ℕ0s𝑁 No )
75, 6syl 17 . . . . . . 7 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑁 No )
8 n0sno 28268 . . . . . . . 8 (𝑀 ∈ ℕ0s𝑀 No )
98adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑀 No )
107, 9subscld 28019 . . . . . 6 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑁 -s 𝑀) ∈ No )
114, 10, 9sleadd2d 27955 . . . . 5 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ( 1s ≤s (𝑁 -s 𝑀) ↔ (𝑀 +s 1s ) ≤s (𝑀 +s (𝑁 -s 𝑀))))
12 pncan3s 28029 . . . . . . 7 ((𝑀 No 𝑁 No ) → (𝑀 +s (𝑁 -s 𝑀)) = 𝑁)
138, 6, 12syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 +s (𝑁 -s 𝑀)) = 𝑁)
1413breq2d 5131 . . . . 5 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑀 +s 1s ) ≤s (𝑀 +s (𝑁 -s 𝑀)) ↔ (𝑀 +s 1s ) ≤s 𝑁))
1511, 14bitrd 279 . . . 4 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ( 1s ≤s (𝑁 -s 𝑀) ↔ (𝑀 +s 1s ) ≤s 𝑁))
162, 15imbitrid 244 . . 3 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑁 -s 𝑀) ∈ ℕs → (𝑀 +s 1s ) ≤s 𝑁))
171, 16sylbid 240 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 → (𝑀 +s 1s ) ≤s 𝑁))
188ad2antrr 726 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 No )
19 peano2no 27943 . . . . 5 (𝑀 No → (𝑀 +s 1s ) ∈ No )
2018, 19syl 17 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → (𝑀 +s 1s ) ∈ No )
216ad2antlr 727 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑁 No )
2218sltp1d 27974 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 <s (𝑀 +s 1s ))
23 simpr 484 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → (𝑀 +s 1s ) ≤s 𝑁)
2418, 20, 21, 22, 23sltletrd 27724 . . 3 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 <s 𝑁)
2524ex 412 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑀 +s 1s ) ≤s 𝑁𝑀 <s 𝑁))
2617, 25impbid 212 1 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑀 +s 1s ) ≤s 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119  (class class class)co 7405   No csur 27603   <s cslt 27604   ≤s csle 27708   1s c1s 27787   +s cadds 27918   -s csubs 27978  0scnn0s 28258  scnns 28259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-n0s 28260  df-nns 28261
This theorem is referenced by:  n0sleltp1  28308
  Copyright terms: Public domain W3C validator