MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sltp1le Structured version   Visualization version   GIF version

Theorem n0sltp1le 28291
Description: Non-negative surreal ordering relation. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
n0sltp1le ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑀 +s 1s ) ≤s 𝑁))

Proof of Theorem n0sltp1le
StepHypRef Expression
1 n0subs2 28290 . . 3 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕs))
2 nnsge1 28271 . . . 4 ((𝑁 -s 𝑀) ∈ ℕs → 1s ≤s (𝑁 -s 𝑀))
3 1sno 27771 . . . . . . 7 1s No
43a1i 11 . . . . . 6 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 1s No )
5 simpr 484 . . . . . . . 8 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑁 ∈ ℕ0s)
6 n0sno 28252 . . . . . . . 8 (𝑁 ∈ ℕ0s𝑁 No )
75, 6syl 17 . . . . . . 7 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑁 No )
8 n0sno 28252 . . . . . . . 8 (𝑀 ∈ ℕ0s𝑀 No )
98adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑀 No )
107, 9subscld 28003 . . . . . 6 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑁 -s 𝑀) ∈ No )
114, 10, 9sleadd2d 27939 . . . . 5 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ( 1s ≤s (𝑁 -s 𝑀) ↔ (𝑀 +s 1s ) ≤s (𝑀 +s (𝑁 -s 𝑀))))
12 pncan3s 28013 . . . . . . 7 ((𝑀 No 𝑁 No ) → (𝑀 +s (𝑁 -s 𝑀)) = 𝑁)
138, 6, 12syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 +s (𝑁 -s 𝑀)) = 𝑁)
1413breq2d 5101 . . . . 5 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑀 +s 1s ) ≤s (𝑀 +s (𝑁 -s 𝑀)) ↔ (𝑀 +s 1s ) ≤s 𝑁))
1511, 14bitrd 279 . . . 4 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ( 1s ≤s (𝑁 -s 𝑀) ↔ (𝑀 +s 1s ) ≤s 𝑁))
162, 15imbitrid 244 . . 3 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑁 -s 𝑀) ∈ ℕs → (𝑀 +s 1s ) ≤s 𝑁))
171, 16sylbid 240 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 → (𝑀 +s 1s ) ≤s 𝑁))
188ad2antrr 726 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 No )
19 peano2no 27927 . . . . 5 (𝑀 No → (𝑀 +s 1s ) ∈ No )
2018, 19syl 17 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → (𝑀 +s 1s ) ∈ No )
216ad2antlr 727 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑁 No )
2218sltp1d 27958 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 <s (𝑀 +s 1s ))
23 simpr 484 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → (𝑀 +s 1s ) ≤s 𝑁)
2418, 20, 21, 22, 23sltletrd 27699 . . 3 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 <s 𝑁)
2524ex 412 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑀 +s 1s ) ≤s 𝑁𝑀 <s 𝑁))
2617, 25impbid 212 1 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑀 +s 1s ) ≤s 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  (class class class)co 7346   No csur 27578   <s cslt 27579   ≤s csle 27683   1s c1s 27767   +s cadds 27902   -s csubs 27962  0scnn0s 28242  scnns 28243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-n0s 28244  df-nns 28245
This theorem is referenced by:  n0sleltp1  28292
  Copyright terms: Public domain W3C validator