MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sltp1le Structured version   Visualization version   GIF version

Theorem n0sltp1le 28262
Description: Non-negative surreal ordering relation. (Contributed by Scott Fenton, 7-Nov-2025.)
Assertion
Ref Expression
n0sltp1le ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑀 +s 1s ) ≤s 𝑁))

Proof of Theorem n0sltp1le
StepHypRef Expression
1 n0subs2 28261 . . 3 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑁 -s 𝑀) ∈ ℕs))
2 nnsge1 28242 . . . 4 ((𝑁 -s 𝑀) ∈ ℕs → 1s ≤s (𝑁 -s 𝑀))
3 1sno 27746 . . . . . . 7 1s No
43a1i 11 . . . . . 6 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 1s No )
5 simpr 484 . . . . . . . 8 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑁 ∈ ℕ0s)
6 n0sno 28223 . . . . . . . 8 (𝑁 ∈ ℕ0s𝑁 No )
75, 6syl 17 . . . . . . 7 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑁 No )
8 n0sno 28223 . . . . . . . 8 (𝑀 ∈ ℕ0s𝑀 No )
98adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → 𝑀 No )
107, 9subscld 27974 . . . . . 6 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑁 -s 𝑀) ∈ No )
114, 10, 9sleadd2d 27910 . . . . 5 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ( 1s ≤s (𝑁 -s 𝑀) ↔ (𝑀 +s 1s ) ≤s (𝑀 +s (𝑁 -s 𝑀))))
12 pncan3s 27984 . . . . . . 7 ((𝑀 No 𝑁 No ) → (𝑀 +s (𝑁 -s 𝑀)) = 𝑁)
138, 6, 12syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 +s (𝑁 -s 𝑀)) = 𝑁)
1413breq2d 5122 . . . . 5 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑀 +s 1s ) ≤s (𝑀 +s (𝑁 -s 𝑀)) ↔ (𝑀 +s 1s ) ≤s 𝑁))
1511, 14bitrd 279 . . . 4 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ( 1s ≤s (𝑁 -s 𝑀) ↔ (𝑀 +s 1s ) ≤s 𝑁))
162, 15imbitrid 244 . . 3 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑁 -s 𝑀) ∈ ℕs → (𝑀 +s 1s ) ≤s 𝑁))
171, 16sylbid 240 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 → (𝑀 +s 1s ) ≤s 𝑁))
188ad2antrr 726 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 No )
19 peano2no 27898 . . . . 5 (𝑀 No → (𝑀 +s 1s ) ∈ No )
2018, 19syl 17 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → (𝑀 +s 1s ) ∈ No )
216ad2antlr 727 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑁 No )
2218sltp1d 27929 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 <s (𝑀 +s 1s ))
23 simpr 484 . . . 4 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → (𝑀 +s 1s ) ≤s 𝑁)
2418, 20, 21, 22, 23sltletrd 27679 . . 3 (((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) ∧ (𝑀 +s 1s ) ≤s 𝑁) → 𝑀 <s 𝑁)
2524ex 412 . 2 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → ((𝑀 +s 1s ) ≤s 𝑁𝑀 <s 𝑁))
2617, 25impbid 212 1 ((𝑀 ∈ ℕ0s𝑁 ∈ ℕ0s) → (𝑀 <s 𝑁 ↔ (𝑀 +s 1s ) ≤s 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390   No csur 27558   <s cslt 27559   ≤s csle 27663   1s c1s 27742   +s cadds 27873   -s csubs 27933  0scnn0s 28213  scnns 28214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-n0s 28215  df-nns 28216
This theorem is referenced by:  n0sleltp1  28263
  Copyright terms: Public domain W3C validator