MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfcut Structured version   Visualization version   GIF version

Theorem halfcut 28346
Description: Relate the cut of twice of two numbers to the cut of the numbers. Lemma 4.2 of [Gonshor] p. 28. (Contributed by Scott Fenton, 7-Aug-2025.) Avoid the axiom of infinity. (Proof modified by Scott Fenton, 6-Sep-2025.)
Hypotheses
Ref Expression
halfcut.1 (𝜑𝐴 No )
halfcut.2 (𝜑𝐵 No )
halfcut.3 (𝜑𝐴 <s 𝐵)
halfcut.4 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = (𝐴 +s 𝐵))
halfcut.5 𝐶 = ({𝐴} |s {𝐵})
Assertion
Ref Expression
halfcut (𝜑𝐶 = ((𝐴 +s 𝐵) /su 2s))

Proof of Theorem halfcut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 halfcut.5 . . . . . 6 𝐶 = ({𝐴} |s {𝐵})
2 halfcut.1 . . . . . . . 8 (𝜑𝐴 No )
3 halfcut.2 . . . . . . . 8 (𝜑𝐵 No )
4 halfcut.3 . . . . . . . 8 (𝜑𝐴 <s 𝐵)
52, 3, 4ssltsn 27703 . . . . . . 7 (𝜑 → {𝐴} <<s {𝐵})
65scutcld 27714 . . . . . 6 (𝜑 → ({𝐴} |s {𝐵}) ∈ No )
71, 6eqeltrid 2832 . . . . 5 (𝜑𝐶 No )
8 no2times 28309 . . . . 5 (𝐶 No → (2s ·s 𝐶) = (𝐶 +s 𝐶))
97, 8syl 17 . . . 4 (𝜑 → (2s ·s 𝐶) = (𝐶 +s 𝐶))
101a1i 11 . . . . . 6 (𝜑𝐶 = ({𝐴} |s {𝐵}))
115, 5, 10, 10addsunif 27914 . . . . 5 (𝜑 → (𝐶 +s 𝐶) = (({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)})))
12 oveq1 7356 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑦 +s 𝐶) = (𝐴 +s 𝐶))
1312eqeq2d 2740 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐴 +s 𝐶)))
1413rexsng 4628 . . . . . . . . . . 11 (𝐴 No → (∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐴 +s 𝐶)))
152, 14syl 17 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐴 +s 𝐶)))
1615abbidv 2795 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} = {𝑥𝑥 = (𝐴 +s 𝐶)})
17 oveq2 7357 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → (𝐶 +s 𝑦) = (𝐶 +s 𝐴))
1817eqeq2d 2740 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐴)))
1918rexsng 4628 . . . . . . . . . . . 12 (𝐴 No → (∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐴)))
202, 19syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐴)))
217, 2addscomd 27879 . . . . . . . . . . . 12 (𝜑 → (𝐶 +s 𝐴) = (𝐴 +s 𝐶))
2221eqeq2d 2740 . . . . . . . . . . 11 (𝜑 → (𝑥 = (𝐶 +s 𝐴) ↔ 𝑥 = (𝐴 +s 𝐶)))
2320, 22bitrd 279 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐴 +s 𝐶)))
2423abbidv 2795 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)} = {𝑥𝑥 = (𝐴 +s 𝐶)})
2516, 24uneq12d 4120 . . . . . . . 8 (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) = ({𝑥𝑥 = (𝐴 +s 𝐶)} ∪ {𝑥𝑥 = (𝐴 +s 𝐶)}))
26 df-sn 4578 . . . . . . . . 9 {(𝐴 +s 𝐶)} = {𝑥𝑥 = (𝐴 +s 𝐶)}
27 unidm 4108 . . . . . . . . 9 ({𝑥𝑥 = (𝐴 +s 𝐶)} ∪ {𝑥𝑥 = (𝐴 +s 𝐶)}) = {𝑥𝑥 = (𝐴 +s 𝐶)}
2826, 27eqtr4i 2755 . . . . . . . 8 {(𝐴 +s 𝐶)} = ({𝑥𝑥 = (𝐴 +s 𝐶)} ∪ {𝑥𝑥 = (𝐴 +s 𝐶)})
2925, 28eqtr4di 2782 . . . . . . 7 (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) = {(𝐴 +s 𝐶)})
30 oveq1 7356 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (𝑦 +s 𝐶) = (𝐵 +s 𝐶))
3130eqeq2d 2740 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐵 +s 𝐶)))
3231rexsng 4628 . . . . . . . . . . 11 (𝐵 No → (∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐵 +s 𝐶)))
333, 32syl 17 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐵 +s 𝐶)))
3433abbidv 2795 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} = {𝑥𝑥 = (𝐵 +s 𝐶)})
35 oveq2 7357 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → (𝐶 +s 𝑦) = (𝐶 +s 𝐵))
3635eqeq2d 2740 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐵)))
3736rexsng 4628 . . . . . . . . . . . 12 (𝐵 No → (∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐵)))
383, 37syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐵)))
397, 3addscomd 27879 . . . . . . . . . . . 12 (𝜑 → (𝐶 +s 𝐵) = (𝐵 +s 𝐶))
4039eqeq2d 2740 . . . . . . . . . . 11 (𝜑 → (𝑥 = (𝐶 +s 𝐵) ↔ 𝑥 = (𝐵 +s 𝐶)))
4138, 40bitrd 279 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐵 +s 𝐶)))
4241abbidv 2795 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)} = {𝑥𝑥 = (𝐵 +s 𝐶)})
4334, 42uneq12d 4120 . . . . . . . 8 (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)}) = ({𝑥𝑥 = (𝐵 +s 𝐶)} ∪ {𝑥𝑥 = (𝐵 +s 𝐶)}))
44 df-sn 4578 . . . . . . . . 9 {(𝐵 +s 𝐶)} = {𝑥𝑥 = (𝐵 +s 𝐶)}
45 unidm 4108 . . . . . . . . 9 ({𝑥𝑥 = (𝐵 +s 𝐶)} ∪ {𝑥𝑥 = (𝐵 +s 𝐶)}) = {𝑥𝑥 = (𝐵 +s 𝐶)}
4644, 45eqtr4i 2755 . . . . . . . 8 {(𝐵 +s 𝐶)} = ({𝑥𝑥 = (𝐵 +s 𝐶)} ∪ {𝑥𝑥 = (𝐵 +s 𝐶)})
4743, 46eqtr4di 2782 . . . . . . 7 (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)}) = {(𝐵 +s 𝐶)})
4829, 47oveq12d 7367 . . . . . 6 (𝜑 → (({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)})) = ({(𝐴 +s 𝐶)} |s {(𝐵 +s 𝐶)}))
49 2sno 28311 . . . . . . . . . 10 2s No
5049a1i 11 . . . . . . . . 9 (𝜑 → 2s No )
5150, 2mulscld 28043 . . . . . . . 8 (𝜑 → (2s ·s 𝐴) ∈ No )
5250, 3mulscld 28043 . . . . . . . 8 (𝜑 → (2s ·s 𝐵) ∈ No )
53 2nns 28310 . . . . . . . . . . 11 2s ∈ ℕs
54 nnsgt0 28236 . . . . . . . . . . 11 (2s ∈ ℕs → 0s <s 2s)
5553, 54mp1i 13 . . . . . . . . . 10 (𝜑 → 0s <s 2s)
562, 3, 50, 55sltmul2d 28080 . . . . . . . . 9 (𝜑 → (𝐴 <s 𝐵 ↔ (2s ·s 𝐴) <s (2s ·s 𝐵)))
574, 56mpbid 232 . . . . . . . 8 (𝜑 → (2s ·s 𝐴) <s (2s ·s 𝐵))
5851, 52, 57ssltsn 27703 . . . . . . 7 (𝜑 → {(2s ·s 𝐴)} <<s {(2s ·s 𝐵)})
59 no2times 28309 . . . . . . . . . 10 (𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
602, 59syl 17 . . . . . . . . 9 (𝜑 → (2s ·s 𝐴) = (𝐴 +s 𝐴))
61 slerflex 27673 . . . . . . . . . . . . . . 15 (𝐴 No 𝐴 ≤s 𝐴)
622, 61syl 17 . . . . . . . . . . . . . 14 (𝜑𝐴 ≤s 𝐴)
63 breq2 5096 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → (𝐴 ≤s 𝑥𝐴 ≤s 𝐴))
6463rexsng 4628 . . . . . . . . . . . . . . 15 (𝐴 No → (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥𝐴 ≤s 𝐴))
652, 64syl 17 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥𝐴 ≤s 𝐴))
6662, 65mpbird 257 . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥)
6766orcd 873 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥 ∨ ∃𝑦 ∈ ( R ‘𝐴)𝑦 ≤s 𝐶))
68 lltropt 27786 . . . . . . . . . . . . . 14 ( L ‘𝐴) <<s ( R ‘𝐴)
6968a1i 11 . . . . . . . . . . . . 13 (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴))
70 lrcut 27818 . . . . . . . . . . . . . . 15 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
712, 70syl 17 . . . . . . . . . . . . . 14 (𝜑 → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
7271eqcomd 2735 . . . . . . . . . . . . 13 (𝜑𝐴 = (( L ‘𝐴) |s ( R ‘𝐴)))
7369, 5, 72, 10sltrecd 27733 . . . . . . . . . . . 12 (𝜑 → (𝐴 <s 𝐶 ↔ (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥 ∨ ∃𝑦 ∈ ( R ‘𝐴)𝑦 ≤s 𝐶)))
7467, 73mpbird 257 . . . . . . . . . . 11 (𝜑𝐴 <s 𝐶)
752, 7, 74sltled 27679 . . . . . . . . . 10 (𝜑𝐴 ≤s 𝐶)
762, 7, 2sleadd2d 27908 . . . . . . . . . 10 (𝜑 → (𝐴 ≤s 𝐶 ↔ (𝐴 +s 𝐴) ≤s (𝐴 +s 𝐶)))
7775, 76mpbid 232 . . . . . . . . 9 (𝜑 → (𝐴 +s 𝐴) ≤s (𝐴 +s 𝐶))
7860, 77eqbrtrd 5114 . . . . . . . 8 (𝜑 → (2s ·s 𝐴) ≤s (𝐴 +s 𝐶))
79 ovex 7382 . . . . . . . . . 10 (2s ·s 𝐴) ∈ V
80 breq1 5095 . . . . . . . . . . 11 (𝑥 = (2s ·s 𝐴) → (𝑥 ≤s 𝑦 ↔ (2s ·s 𝐴) ≤s 𝑦))
8180rexbidv 3153 . . . . . . . . . 10 (𝑥 = (2s ·s 𝐴) → (∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ {(𝐴 +s 𝐶)} (2s ·s 𝐴) ≤s 𝑦))
8279, 81ralsn 4633 . . . . . . . . 9 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ {(𝐴 +s 𝐶)} (2s ·s 𝐴) ≤s 𝑦)
83 ovex 7382 . . . . . . . . . 10 (𝐴 +s 𝐶) ∈ V
84 breq2 5096 . . . . . . . . . 10 (𝑦 = (𝐴 +s 𝐶) → ((2s ·s 𝐴) ≤s 𝑦 ↔ (2s ·s 𝐴) ≤s (𝐴 +s 𝐶)))
8583, 84rexsn 4634 . . . . . . . . 9 (∃𝑦 ∈ {(𝐴 +s 𝐶)} (2s ·s 𝐴) ≤s 𝑦 ↔ (2s ·s 𝐴) ≤s (𝐴 +s 𝐶))
8682, 85bitri 275 . . . . . . . 8 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦 ↔ (2s ·s 𝐴) ≤s (𝐴 +s 𝐶))
8778, 86sylibr 234 . . . . . . 7 (𝜑 → ∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦)
88 slerflex 27673 . . . . . . . . . . . . . . 15 (𝐵 No 𝐵 ≤s 𝐵)
893, 88syl 17 . . . . . . . . . . . . . 14 (𝜑𝐵 ≤s 𝐵)
90 breq1 5095 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → (𝑦 ≤s 𝐵𝐵 ≤s 𝐵))
9190rexsng 4628 . . . . . . . . . . . . . . 15 (𝐵 No → (∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵𝐵 ≤s 𝐵))
923, 91syl 17 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵𝐵 ≤s 𝐵))
9389, 92mpbird 257 . . . . . . . . . . . . 13 (𝜑 → ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵)
9493olcd 874 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ ( L ‘𝐵)𝐶 ≤s 𝑥 ∨ ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵))
95 lltropt 27786 . . . . . . . . . . . . . 14 ( L ‘𝐵) <<s ( R ‘𝐵)
9695a1i 11 . . . . . . . . . . . . 13 (𝜑 → ( L ‘𝐵) <<s ( R ‘𝐵))
97 lrcut 27818 . . . . . . . . . . . . . . 15 (𝐵 No → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
983, 97syl 17 . . . . . . . . . . . . . 14 (𝜑 → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
9998eqcomd 2735 . . . . . . . . . . . . 13 (𝜑𝐵 = (( L ‘𝐵) |s ( R ‘𝐵)))
1005, 96, 10, 99sltrecd 27733 . . . . . . . . . . . 12 (𝜑 → (𝐶 <s 𝐵 ↔ (∃𝑥 ∈ ( L ‘𝐵)𝐶 ≤s 𝑥 ∨ ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵)))
10194, 100mpbird 257 . . . . . . . . . . 11 (𝜑𝐶 <s 𝐵)
1027, 3, 101sltled 27679 . . . . . . . . . 10 (𝜑𝐶 ≤s 𝐵)
1037, 3, 3sleadd2d 27908 . . . . . . . . . 10 (𝜑 → (𝐶 ≤s 𝐵 ↔ (𝐵 +s 𝐶) ≤s (𝐵 +s 𝐵)))
104102, 103mpbid 232 . . . . . . . . 9 (𝜑 → (𝐵 +s 𝐶) ≤s (𝐵 +s 𝐵))
105 no2times 28309 . . . . . . . . . 10 (𝐵 No → (2s ·s 𝐵) = (𝐵 +s 𝐵))
1063, 105syl 17 . . . . . . . . 9 (𝜑 → (2s ·s 𝐵) = (𝐵 +s 𝐵))
107104, 106breqtrrd 5120 . . . . . . . 8 (𝜑 → (𝐵 +s 𝐶) ≤s (2s ·s 𝐵))
108 ovex 7382 . . . . . . . . . 10 (2s ·s 𝐵) ∈ V
109 breq2 5096 . . . . . . . . . . 11 (𝑥 = (2s ·s 𝐵) → (𝑦 ≤s 𝑥𝑦 ≤s (2s ·s 𝐵)))
110109rexbidv 3153 . . . . . . . . . 10 (𝑥 = (2s ·s 𝐵) → (∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥 ↔ ∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s (2s ·s 𝐵)))
111108, 110ralsn 4633 . . . . . . . . 9 (∀𝑥 ∈ {(2s ·s 𝐵)}∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥 ↔ ∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s (2s ·s 𝐵))
112 ovex 7382 . . . . . . . . . 10 (𝐵 +s 𝐶) ∈ V
113 breq1 5095 . . . . . . . . . 10 (𝑦 = (𝐵 +s 𝐶) → (𝑦 ≤s (2s ·s 𝐵) ↔ (𝐵 +s 𝐶) ≤s (2s ·s 𝐵)))
114112, 113rexsn 4634 . . . . . . . . 9 (∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s (2s ·s 𝐵) ↔ (𝐵 +s 𝐶) ≤s (2s ·s 𝐵))
115111, 114bitri 275 . . . . . . . 8 (∀𝑥 ∈ {(2s ·s 𝐵)}∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥 ↔ (𝐵 +s 𝐶) ≤s (2s ·s 𝐵))
116107, 115sylibr 234 . . . . . . 7 (𝜑 → ∀𝑥 ∈ {(2s ·s 𝐵)}∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥)
1172, 7addscld 27892 . . . . . . . . 9 (𝜑 → (𝐴 +s 𝐶) ∈ No )
1182, 3addscld 27892 . . . . . . . . 9 (𝜑 → (𝐴 +s 𝐵) ∈ No )
1197, 3, 2sltadd2d 27909 . . . . . . . . . 10 (𝜑 → (𝐶 <s 𝐵 ↔ (𝐴 +s 𝐶) <s (𝐴 +s 𝐵)))
120101, 119mpbid 232 . . . . . . . . 9 (𝜑 → (𝐴 +s 𝐶) <s (𝐴 +s 𝐵))
121117, 118, 120ssltsn 27703 . . . . . . . 8 (𝜑 → {(𝐴 +s 𝐶)} <<s {(𝐴 +s 𝐵)})
122 halfcut.4 . . . . . . . . 9 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = (𝐴 +s 𝐵))
123122sneqd 4589 . . . . . . . 8 (𝜑 → {({(2s ·s 𝐴)} |s {(2s ·s 𝐵)})} = {(𝐴 +s 𝐵)})
124121, 123breqtrrd 5120 . . . . . . 7 (𝜑 → {(𝐴 +s 𝐶)} <<s {({(2s ·s 𝐴)} |s {(2s ·s 𝐵)})})
1253, 7addscld 27892 . . . . . . . . 9 (𝜑 → (𝐵 +s 𝐶) ∈ No )
1263, 2addscomd 27879 . . . . . . . . . 10 (𝜑 → (𝐵 +s 𝐴) = (𝐴 +s 𝐵))
1272, 7, 3sltadd2d 27909 . . . . . . . . . . 11 (𝜑 → (𝐴 <s 𝐶 ↔ (𝐵 +s 𝐴) <s (𝐵 +s 𝐶)))
12874, 127mpbid 232 . . . . . . . . . 10 (𝜑 → (𝐵 +s 𝐴) <s (𝐵 +s 𝐶))
129126, 128eqbrtrrd 5116 . . . . . . . . 9 (𝜑 → (𝐴 +s 𝐵) <s (𝐵 +s 𝐶))
130118, 125, 129ssltsn 27703 . . . . . . . 8 (𝜑 → {(𝐴 +s 𝐵)} <<s {(𝐵 +s 𝐶)})
131123, 130eqbrtrd 5114 . . . . . . 7 (𝜑 → {({(2s ·s 𝐴)} |s {(2s ·s 𝐵)})} <<s {(𝐵 +s 𝐶)})
13258, 87, 116, 124, 131cofcut1d 27834 . . . . . 6 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = ({(𝐴 +s 𝐶)} |s {(𝐵 +s 𝐶)}))
13348, 132, 1223eqtr2d 2770 . . . . 5 (𝜑 → (({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)})) = (𝐴 +s 𝐵))
13411, 133eqtrd 2764 . . . 4 (𝜑 → (𝐶 +s 𝐶) = (𝐴 +s 𝐵))
1359, 134eqtrd 2764 . . 3 (𝜑 → (2s ·s 𝐶) = (𝐴 +s 𝐵))
136 2ne0s 28312 . . . . 5 2s ≠ 0s
137136a1i 11 . . . 4 (𝜑 → 2s ≠ 0s )
138 0sno 27740 . . . . . . . . . 10 0s No
139138a1i 11 . . . . . . . . 9 (⊤ → 0s No )
140 1sno 27741 . . . . . . . . . 10 1s No
141140a1i 11 . . . . . . . . 9 (⊤ → 1s No )
142 0slt1s 27743 . . . . . . . . . 10 0s <s 1s
143142a1i 11 . . . . . . . . 9 (⊤ → 0s <s 1s )
144139, 141, 143ssltsn 27703 . . . . . . . 8 (⊤ → { 0s } <<s { 1s })
145144scutcld 27714 . . . . . . 7 (⊤ → ({ 0s } |s { 1s }) ∈ No )
146145mptru 1547 . . . . . 6 ({ 0s } |s { 1s }) ∈ No
147 twocut 28315 . . . . . 6 (2s ·s ({ 0s } |s { 1s })) = 1s
148 oveq2 7357 . . . . . . . 8 (𝑥 = ({ 0s } |s { 1s }) → (2s ·s 𝑥) = (2s ·s ({ 0s } |s { 1s })))
149148eqeq1d 2731 . . . . . . 7 (𝑥 = ({ 0s } |s { 1s }) → ((2s ·s 𝑥) = 1s ↔ (2s ·s ({ 0s } |s { 1s })) = 1s ))
150149rspcev 3577 . . . . . 6 ((({ 0s } |s { 1s }) ∈ No ∧ (2s ·s ({ 0s } |s { 1s })) = 1s ) → ∃𝑥 No (2s ·s 𝑥) = 1s )
151146, 147, 150mp2an 692 . . . . 5 𝑥 No (2s ·s 𝑥) = 1s
152151a1i 11 . . . 4 (𝜑 → ∃𝑥 No (2s ·s 𝑥) = 1s )
153118, 7, 50, 137, 152divsmulwd 28102 . . 3 (𝜑 → (((𝐴 +s 𝐵) /su 2s) = 𝐶 ↔ (2s ·s 𝐶) = (𝐴 +s 𝐵)))
154135, 153mpbird 257 . 2 (𝜑 → ((𝐴 +s 𝐵) /su 2s) = 𝐶)
155154eqcomd 2735 1 (𝜑𝐶 = ((𝐴 +s 𝐵) /su 2s))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wtru 1541  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  cun 3901  {csn 4577   class class class wbr 5092  cfv 6482  (class class class)co 7349   No csur 27549   <s cslt 27550   ≤s csle 27654   <<s csslt 27691   |s cscut 27693   0s c0s 27736   1s c1s 27737   L cleft 27755   R cright 27756   +s cadds 27871   ·s cmuls 28014   /su cdivs 28095  scnns 28212  2sc2s 28302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27738  df-1s 27739  df-made 27757  df-old 27758  df-left 27760  df-right 27761  df-norec 27850  df-norec2 27861  df-adds 27872  df-negs 27932  df-subs 27933  df-muls 28015  df-divs 28096  df-n0s 28213  df-nns 28214  df-2s 28303
This theorem is referenced by:  addhalfcut  28347  pw2cut  28348
  Copyright terms: Public domain W3C validator