MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfcut Structured version   Visualization version   GIF version

Theorem halfcut 28390
Description: Relate the cut of twice of two numbers to the cut of the numbers. Lemma 4.2 of [Gonshor] p. 28. (Contributed by Scott Fenton, 7-Aug-2025.) Avoid the axiom of infinity. (Proof modified by Scott Fenton, 6-Sep-2025.)
Hypotheses
Ref Expression
halfcut.1 (𝜑𝐴 No )
halfcut.2 (𝜑𝐵 No )
halfcut.3 (𝜑𝐴 <s 𝐵)
halfcut.4 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = (𝐴 +s 𝐵))
halfcut.5 𝐶 = ({𝐴} |s {𝐵})
Assertion
Ref Expression
halfcut (𝜑𝐶 = ((𝐴 +s 𝐵) /su 2s))

Proof of Theorem halfcut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 halfcut.5 . . . . . 6 𝐶 = ({𝐴} |s {𝐵})
2 halfcut.1 . . . . . . . 8 (𝜑𝐴 No )
3 halfcut.2 . . . . . . . 8 (𝜑𝐵 No )
4 halfcut.3 . . . . . . . 8 (𝜑𝐴 <s 𝐵)
52, 3, 4ssltsn 27761 . . . . . . 7 (𝜑 → {𝐴} <<s {𝐵})
65scutcld 27772 . . . . . 6 (𝜑 → ({𝐴} |s {𝐵}) ∈ No )
71, 6eqeltrid 2839 . . . . 5 (𝜑𝐶 No )
8 no2times 28360 . . . . 5 (𝐶 No → (2s ·s 𝐶) = (𝐶 +s 𝐶))
97, 8syl 17 . . . 4 (𝜑 → (2s ·s 𝐶) = (𝐶 +s 𝐶))
101a1i 11 . . . . . 6 (𝜑𝐶 = ({𝐴} |s {𝐵}))
115, 5, 10, 10addsunif 27966 . . . . 5 (𝜑 → (𝐶 +s 𝐶) = (({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)})))
12 oveq1 7417 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑦 +s 𝐶) = (𝐴 +s 𝐶))
1312eqeq2d 2747 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐴 +s 𝐶)))
1413rexsng 4657 . . . . . . . . . . 11 (𝐴 No → (∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐴 +s 𝐶)))
152, 14syl 17 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐴 +s 𝐶)))
1615abbidv 2802 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} = {𝑥𝑥 = (𝐴 +s 𝐶)})
17 oveq2 7418 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → (𝐶 +s 𝑦) = (𝐶 +s 𝐴))
1817eqeq2d 2747 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐴)))
1918rexsng 4657 . . . . . . . . . . . 12 (𝐴 No → (∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐴)))
202, 19syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐴)))
217, 2addscomd 27931 . . . . . . . . . . . 12 (𝜑 → (𝐶 +s 𝐴) = (𝐴 +s 𝐶))
2221eqeq2d 2747 . . . . . . . . . . 11 (𝜑 → (𝑥 = (𝐶 +s 𝐴) ↔ 𝑥 = (𝐴 +s 𝐶)))
2320, 22bitrd 279 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐴 +s 𝐶)))
2423abbidv 2802 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)} = {𝑥𝑥 = (𝐴 +s 𝐶)})
2516, 24uneq12d 4149 . . . . . . . 8 (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) = ({𝑥𝑥 = (𝐴 +s 𝐶)} ∪ {𝑥𝑥 = (𝐴 +s 𝐶)}))
26 df-sn 4607 . . . . . . . . 9 {(𝐴 +s 𝐶)} = {𝑥𝑥 = (𝐴 +s 𝐶)}
27 unidm 4137 . . . . . . . . 9 ({𝑥𝑥 = (𝐴 +s 𝐶)} ∪ {𝑥𝑥 = (𝐴 +s 𝐶)}) = {𝑥𝑥 = (𝐴 +s 𝐶)}
2826, 27eqtr4i 2762 . . . . . . . 8 {(𝐴 +s 𝐶)} = ({𝑥𝑥 = (𝐴 +s 𝐶)} ∪ {𝑥𝑥 = (𝐴 +s 𝐶)})
2925, 28eqtr4di 2789 . . . . . . 7 (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) = {(𝐴 +s 𝐶)})
30 oveq1 7417 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (𝑦 +s 𝐶) = (𝐵 +s 𝐶))
3130eqeq2d 2747 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐵 +s 𝐶)))
3231rexsng 4657 . . . . . . . . . . 11 (𝐵 No → (∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐵 +s 𝐶)))
333, 32syl 17 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐵 +s 𝐶)))
3433abbidv 2802 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} = {𝑥𝑥 = (𝐵 +s 𝐶)})
35 oveq2 7418 . . . . . . . . . . . . . 14 (𝑦 = 𝐵 → (𝐶 +s 𝑦) = (𝐶 +s 𝐵))
3635eqeq2d 2747 . . . . . . . . . . . . 13 (𝑦 = 𝐵 → (𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐵)))
3736rexsng 4657 . . . . . . . . . . . 12 (𝐵 No → (∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐵)))
383, 37syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐵)))
397, 3addscomd 27931 . . . . . . . . . . . 12 (𝜑 → (𝐶 +s 𝐵) = (𝐵 +s 𝐶))
4039eqeq2d 2747 . . . . . . . . . . 11 (𝜑 → (𝑥 = (𝐶 +s 𝐵) ↔ 𝑥 = (𝐵 +s 𝐶)))
4138, 40bitrd 279 . . . . . . . . . 10 (𝜑 → (∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐵 +s 𝐶)))
4241abbidv 2802 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)} = {𝑥𝑥 = (𝐵 +s 𝐶)})
4334, 42uneq12d 4149 . . . . . . . 8 (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)}) = ({𝑥𝑥 = (𝐵 +s 𝐶)} ∪ {𝑥𝑥 = (𝐵 +s 𝐶)}))
44 df-sn 4607 . . . . . . . . 9 {(𝐵 +s 𝐶)} = {𝑥𝑥 = (𝐵 +s 𝐶)}
45 unidm 4137 . . . . . . . . 9 ({𝑥𝑥 = (𝐵 +s 𝐶)} ∪ {𝑥𝑥 = (𝐵 +s 𝐶)}) = {𝑥𝑥 = (𝐵 +s 𝐶)}
4644, 45eqtr4i 2762 . . . . . . . 8 {(𝐵 +s 𝐶)} = ({𝑥𝑥 = (𝐵 +s 𝐶)} ∪ {𝑥𝑥 = (𝐵 +s 𝐶)})
4743, 46eqtr4di 2789 . . . . . . 7 (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)}) = {(𝐵 +s 𝐶)})
4829, 47oveq12d 7428 . . . . . 6 (𝜑 → (({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)})) = ({(𝐴 +s 𝐶)} |s {(𝐵 +s 𝐶)}))
49 2sno 28362 . . . . . . . . . 10 2s No
5049a1i 11 . . . . . . . . 9 (𝜑 → 2s No )
5150, 2mulscld 28095 . . . . . . . 8 (𝜑 → (2s ·s 𝐴) ∈ No )
5250, 3mulscld 28095 . . . . . . . 8 (𝜑 → (2s ·s 𝐵) ∈ No )
53 2nns 28361 . . . . . . . . . . 11 2s ∈ ℕs
54 nnsgt0 28288 . . . . . . . . . . 11 (2s ∈ ℕs → 0s <s 2s)
5553, 54mp1i 13 . . . . . . . . . 10 (𝜑 → 0s <s 2s)
562, 3, 50, 55sltmul2d 28132 . . . . . . . . 9 (𝜑 → (𝐴 <s 𝐵 ↔ (2s ·s 𝐴) <s (2s ·s 𝐵)))
574, 56mpbid 232 . . . . . . . 8 (𝜑 → (2s ·s 𝐴) <s (2s ·s 𝐵))
5851, 52, 57ssltsn 27761 . . . . . . 7 (𝜑 → {(2s ·s 𝐴)} <<s {(2s ·s 𝐵)})
59 no2times 28360 . . . . . . . . . 10 (𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
602, 59syl 17 . . . . . . . . 9 (𝜑 → (2s ·s 𝐴) = (𝐴 +s 𝐴))
61 slerflex 27732 . . . . . . . . . . . . . . 15 (𝐴 No 𝐴 ≤s 𝐴)
622, 61syl 17 . . . . . . . . . . . . . 14 (𝜑𝐴 ≤s 𝐴)
63 breq2 5128 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → (𝐴 ≤s 𝑥𝐴 ≤s 𝐴))
6463rexsng 4657 . . . . . . . . . . . . . . 15 (𝐴 No → (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥𝐴 ≤s 𝐴))
652, 64syl 17 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥𝐴 ≤s 𝐴))
6662, 65mpbird 257 . . . . . . . . . . . . 13 (𝜑 → ∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥)
6766orcd 873 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥 ∨ ∃𝑦 ∈ ( R ‘𝐴)𝑦 ≤s 𝐶))
68 lltropt 27841 . . . . . . . . . . . . . 14 ( L ‘𝐴) <<s ( R ‘𝐴)
6968a1i 11 . . . . . . . . . . . . 13 (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴))
70 lrcut 27872 . . . . . . . . . . . . . . 15 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
712, 70syl 17 . . . . . . . . . . . . . 14 (𝜑 → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
7271eqcomd 2742 . . . . . . . . . . . . 13 (𝜑𝐴 = (( L ‘𝐴) |s ( R ‘𝐴)))
73 sltrec 27789 . . . . . . . . . . . . 13 (((( L ‘𝐴) <<s ( R ‘𝐴) ∧ {𝐴} <<s {𝐵}) ∧ (𝐴 = (( L ‘𝐴) |s ( R ‘𝐴)) ∧ 𝐶 = ({𝐴} |s {𝐵}))) → (𝐴 <s 𝐶 ↔ (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥 ∨ ∃𝑦 ∈ ( R ‘𝐴)𝑦 ≤s 𝐶)))
7469, 5, 72, 10, 73syl22anc 838 . . . . . . . . . . . 12 (𝜑 → (𝐴 <s 𝐶 ↔ (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥 ∨ ∃𝑦 ∈ ( R ‘𝐴)𝑦 ≤s 𝐶)))
7567, 74mpbird 257 . . . . . . . . . . 11 (𝜑𝐴 <s 𝐶)
762, 7, 75sltled 27738 . . . . . . . . . 10 (𝜑𝐴 ≤s 𝐶)
772, 7, 2sleadd2d 27960 . . . . . . . . . 10 (𝜑 → (𝐴 ≤s 𝐶 ↔ (𝐴 +s 𝐴) ≤s (𝐴 +s 𝐶)))
7876, 77mpbid 232 . . . . . . . . 9 (𝜑 → (𝐴 +s 𝐴) ≤s (𝐴 +s 𝐶))
7960, 78eqbrtrd 5146 . . . . . . . 8 (𝜑 → (2s ·s 𝐴) ≤s (𝐴 +s 𝐶))
80 ovex 7443 . . . . . . . . . 10 (2s ·s 𝐴) ∈ V
81 breq1 5127 . . . . . . . . . . 11 (𝑥 = (2s ·s 𝐴) → (𝑥 ≤s 𝑦 ↔ (2s ·s 𝐴) ≤s 𝑦))
8281rexbidv 3165 . . . . . . . . . 10 (𝑥 = (2s ·s 𝐴) → (∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ {(𝐴 +s 𝐶)} (2s ·s 𝐴) ≤s 𝑦))
8380, 82ralsn 4662 . . . . . . . . 9 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ {(𝐴 +s 𝐶)} (2s ·s 𝐴) ≤s 𝑦)
84 ovex 7443 . . . . . . . . . 10 (𝐴 +s 𝐶) ∈ V
85 breq2 5128 . . . . . . . . . 10 (𝑦 = (𝐴 +s 𝐶) → ((2s ·s 𝐴) ≤s 𝑦 ↔ (2s ·s 𝐴) ≤s (𝐴 +s 𝐶)))
8684, 85rexsn 4663 . . . . . . . . 9 (∃𝑦 ∈ {(𝐴 +s 𝐶)} (2s ·s 𝐴) ≤s 𝑦 ↔ (2s ·s 𝐴) ≤s (𝐴 +s 𝐶))
8783, 86bitri 275 . . . . . . . 8 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦 ↔ (2s ·s 𝐴) ≤s (𝐴 +s 𝐶))
8879, 87sylibr 234 . . . . . . 7 (𝜑 → ∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦)
89 slerflex 27732 . . . . . . . . . . . . . . 15 (𝐵 No 𝐵 ≤s 𝐵)
903, 89syl 17 . . . . . . . . . . . . . 14 (𝜑𝐵 ≤s 𝐵)
91 breq1 5127 . . . . . . . . . . . . . . . 16 (𝑦 = 𝐵 → (𝑦 ≤s 𝐵𝐵 ≤s 𝐵))
9291rexsng 4657 . . . . . . . . . . . . . . 15 (𝐵 No → (∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵𝐵 ≤s 𝐵))
933, 92syl 17 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵𝐵 ≤s 𝐵))
9490, 93mpbird 257 . . . . . . . . . . . . 13 (𝜑 → ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵)
9594olcd 874 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ ( L ‘𝐵)𝐶 ≤s 𝑥 ∨ ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵))
96 lltropt 27841 . . . . . . . . . . . . . 14 ( L ‘𝐵) <<s ( R ‘𝐵)
9796a1i 11 . . . . . . . . . . . . 13 (𝜑 → ( L ‘𝐵) <<s ( R ‘𝐵))
98 lrcut 27872 . . . . . . . . . . . . . . 15 (𝐵 No → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
993, 98syl 17 . . . . . . . . . . . . . 14 (𝜑 → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵)
10099eqcomd 2742 . . . . . . . . . . . . 13 (𝜑𝐵 = (( L ‘𝐵) |s ( R ‘𝐵)))
101 sltrec 27789 . . . . . . . . . . . . 13 ((({𝐴} <<s {𝐵} ∧ ( L ‘𝐵) <<s ( R ‘𝐵)) ∧ (𝐶 = ({𝐴} |s {𝐵}) ∧ 𝐵 = (( L ‘𝐵) |s ( R ‘𝐵)))) → (𝐶 <s 𝐵 ↔ (∃𝑥 ∈ ( L ‘𝐵)𝐶 ≤s 𝑥 ∨ ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵)))
1025, 97, 10, 100, 101syl22anc 838 . . . . . . . . . . . 12 (𝜑 → (𝐶 <s 𝐵 ↔ (∃𝑥 ∈ ( L ‘𝐵)𝐶 ≤s 𝑥 ∨ ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵)))
10395, 102mpbird 257 . . . . . . . . . . 11 (𝜑𝐶 <s 𝐵)
1047, 3, 103sltled 27738 . . . . . . . . . 10 (𝜑𝐶 ≤s 𝐵)
1057, 3, 3sleadd2d 27960 . . . . . . . . . 10 (𝜑 → (𝐶 ≤s 𝐵 ↔ (𝐵 +s 𝐶) ≤s (𝐵 +s 𝐵)))
106104, 105mpbid 232 . . . . . . . . 9 (𝜑 → (𝐵 +s 𝐶) ≤s (𝐵 +s 𝐵))
107 no2times 28360 . . . . . . . . . 10 (𝐵 No → (2s ·s 𝐵) = (𝐵 +s 𝐵))
1083, 107syl 17 . . . . . . . . 9 (𝜑 → (2s ·s 𝐵) = (𝐵 +s 𝐵))
109106, 108breqtrrd 5152 . . . . . . . 8 (𝜑 → (𝐵 +s 𝐶) ≤s (2s ·s 𝐵))
110 ovex 7443 . . . . . . . . . 10 (2s ·s 𝐵) ∈ V
111 breq2 5128 . . . . . . . . . . 11 (𝑥 = (2s ·s 𝐵) → (𝑦 ≤s 𝑥𝑦 ≤s (2s ·s 𝐵)))
112111rexbidv 3165 . . . . . . . . . 10 (𝑥 = (2s ·s 𝐵) → (∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥 ↔ ∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s (2s ·s 𝐵)))
113110, 112ralsn 4662 . . . . . . . . 9 (∀𝑥 ∈ {(2s ·s 𝐵)}∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥 ↔ ∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s (2s ·s 𝐵))
114 ovex 7443 . . . . . . . . . 10 (𝐵 +s 𝐶) ∈ V
115 breq1 5127 . . . . . . . . . 10 (𝑦 = (𝐵 +s 𝐶) → (𝑦 ≤s (2s ·s 𝐵) ↔ (𝐵 +s 𝐶) ≤s (2s ·s 𝐵)))
116114, 115rexsn 4663 . . . . . . . . 9 (∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s (2s ·s 𝐵) ↔ (𝐵 +s 𝐶) ≤s (2s ·s 𝐵))
117113, 116bitri 275 . . . . . . . 8 (∀𝑥 ∈ {(2s ·s 𝐵)}∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥 ↔ (𝐵 +s 𝐶) ≤s (2s ·s 𝐵))
118109, 117sylibr 234 . . . . . . 7 (𝜑 → ∀𝑥 ∈ {(2s ·s 𝐵)}∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥)
1192, 7addscld 27944 . . . . . . . . 9 (𝜑 → (𝐴 +s 𝐶) ∈ No )
1202, 3addscld 27944 . . . . . . . . 9 (𝜑 → (𝐴 +s 𝐵) ∈ No )
1217, 3, 2sltadd2d 27961 . . . . . . . . . 10 (𝜑 → (𝐶 <s 𝐵 ↔ (𝐴 +s 𝐶) <s (𝐴 +s 𝐵)))
122103, 121mpbid 232 . . . . . . . . 9 (𝜑 → (𝐴 +s 𝐶) <s (𝐴 +s 𝐵))
123119, 120, 122ssltsn 27761 . . . . . . . 8 (𝜑 → {(𝐴 +s 𝐶)} <<s {(𝐴 +s 𝐵)})
124 halfcut.4 . . . . . . . . 9 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = (𝐴 +s 𝐵))
125124sneqd 4618 . . . . . . . 8 (𝜑 → {({(2s ·s 𝐴)} |s {(2s ·s 𝐵)})} = {(𝐴 +s 𝐵)})
126123, 125breqtrrd 5152 . . . . . . 7 (𝜑 → {(𝐴 +s 𝐶)} <<s {({(2s ·s 𝐴)} |s {(2s ·s 𝐵)})})
1273, 7addscld 27944 . . . . . . . . 9 (𝜑 → (𝐵 +s 𝐶) ∈ No )
1283, 2addscomd 27931 . . . . . . . . . 10 (𝜑 → (𝐵 +s 𝐴) = (𝐴 +s 𝐵))
1292, 7, 3sltadd2d 27961 . . . . . . . . . . 11 (𝜑 → (𝐴 <s 𝐶 ↔ (𝐵 +s 𝐴) <s (𝐵 +s 𝐶)))
13075, 129mpbid 232 . . . . . . . . . 10 (𝜑 → (𝐵 +s 𝐴) <s (𝐵 +s 𝐶))
131128, 130eqbrtrrd 5148 . . . . . . . . 9 (𝜑 → (𝐴 +s 𝐵) <s (𝐵 +s 𝐶))
132120, 127, 131ssltsn 27761 . . . . . . . 8 (𝜑 → {(𝐴 +s 𝐵)} <<s {(𝐵 +s 𝐶)})
133125, 132eqbrtrd 5146 . . . . . . 7 (𝜑 → {({(2s ·s 𝐴)} |s {(2s ·s 𝐵)})} <<s {(𝐵 +s 𝐶)})
13458, 88, 118, 126, 133cofcut1d 27886 . . . . . 6 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s 𝐵)}) = ({(𝐴 +s 𝐶)} |s {(𝐵 +s 𝐶)}))
13548, 134, 1243eqtr2d 2777 . . . . 5 (𝜑 → (({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)})) = (𝐴 +s 𝐵))
13611, 135eqtrd 2771 . . . 4 (𝜑 → (𝐶 +s 𝐶) = (𝐴 +s 𝐵))
1379, 136eqtrd 2771 . . 3 (𝜑 → (2s ·s 𝐶) = (𝐴 +s 𝐵))
138 2ne0s 28363 . . . . 5 2s ≠ 0s
139138a1i 11 . . . 4 (𝜑 → 2s ≠ 0s )
140 0sno 27795 . . . . . . . . . 10 0s No
141140a1i 11 . . . . . . . . 9 (⊤ → 0s No )
142 1sno 27796 . . . . . . . . . 10 1s No
143142a1i 11 . . . . . . . . 9 (⊤ → 1s No )
144 0slt1s 27798 . . . . . . . . . 10 0s <s 1s
145144a1i 11 . . . . . . . . 9 (⊤ → 0s <s 1s )
146141, 143, 145ssltsn 27761 . . . . . . . 8 (⊤ → { 0s } <<s { 1s })
147146scutcld 27772 . . . . . . 7 (⊤ → ({ 0s } |s { 1s }) ∈ No )
148147mptru 1547 . . . . . 6 ({ 0s } |s { 1s }) ∈ No
149 twocut 28366 . . . . . 6 (2s ·s ({ 0s } |s { 1s })) = 1s
150 oveq2 7418 . . . . . . . 8 (𝑥 = ({ 0s } |s { 1s }) → (2s ·s 𝑥) = (2s ·s ({ 0s } |s { 1s })))
151150eqeq1d 2738 . . . . . . 7 (𝑥 = ({ 0s } |s { 1s }) → ((2s ·s 𝑥) = 1s ↔ (2s ·s ({ 0s } |s { 1s })) = 1s ))
152151rspcev 3606 . . . . . 6 ((({ 0s } |s { 1s }) ∈ No ∧ (2s ·s ({ 0s } |s { 1s })) = 1s ) → ∃𝑥 No (2s ·s 𝑥) = 1s )
153148, 149, 152mp2an 692 . . . . 5 𝑥 No (2s ·s 𝑥) = 1s
154153a1i 11 . . . 4 (𝜑 → ∃𝑥 No (2s ·s 𝑥) = 1s )
155120, 7, 50, 139, 154divsmulwd 28154 . . 3 (𝜑 → (((𝐴 +s 𝐵) /su 2s) = 𝐶 ↔ (2s ·s 𝐶) = (𝐴 +s 𝐵)))
156137, 155mpbird 257 . 2 (𝜑 → ((𝐴 +s 𝐵) /su 2s) = 𝐶)
157156eqcomd 2742 1 (𝜑𝐶 = ((𝐴 +s 𝐵) /su 2s))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wtru 1541  wcel 2109  {cab 2714  wne 2933  wral 3052  wrex 3061  cun 3929  {csn 4606   class class class wbr 5124  cfv 6536  (class class class)co 7410   No csur 27608   <s cslt 27609   ≤s csle 27713   <<s csslt 27749   |s cscut 27751   0s c0s 27791   1s c1s 27792   L cleft 27810   R cright 27811   +s cadds 27923   ·s cmuls 28066   /su cdivs 28147  scnns 28264  2sc2s 28353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984  df-subs 27985  df-muls 28067  df-divs 28148  df-n0s 28265  df-nns 28266  df-2s 28354
This theorem is referenced by:  addhalfcut  28391  pw2cut  28392
  Copyright terms: Public domain W3C validator