Step | Hyp | Ref
| Expression |
1 | | halfcut.5 |
. . . . . 6
⊢ 𝐶 = ({𝐴} |s {𝐵}) |
2 | | halfcut.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ No
) |
3 | | halfcut.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ No
) |
4 | | halfcut.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 <s 𝐵) |
5 | 2, 3, 4 | ssltsn 27855 |
. . . . . . 7
⊢ (𝜑 → {𝐴} <<s {𝐵}) |
6 | 5 | scutcld 27866 |
. . . . . 6
⊢ (𝜑 → ({𝐴} |s {𝐵}) ∈ No
) |
7 | 1, 6 | eqeltrid 2848 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ No
) |
8 | | no2times 28419 |
. . . . 5
⊢ (𝐶 ∈
No → (2s ·s 𝐶) = (𝐶 +s 𝐶)) |
9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → (2s
·s 𝐶) =
(𝐶 +s 𝐶)) |
10 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐶 = ({𝐴} |s {𝐵})) |
11 | 5, 5, 10, 10 | addsunif 28053 |
. . . 4
⊢ (𝜑 → (𝐶 +s 𝐶) = (({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)}))) |
12 | | oveq1 7455 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (𝑦 +s 𝐶) = (𝐴 +s 𝐶)) |
13 | 12 | eqeq2d 2751 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → (𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐴 +s 𝐶))) |
14 | 13 | rexsng 4698 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
No → (∃𝑦
∈ {𝐴}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐴 +s 𝐶))) |
15 | 2, 14 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐴 +s 𝐶))) |
16 | 15 | abbidv 2811 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} = {𝑥 ∣ 𝑥 = (𝐴 +s 𝐶)}) |
17 | | df-sn 4649 |
. . . . . . . . 9
⊢ {(𝐴 +s 𝐶)} = {𝑥 ∣ 𝑥 = (𝐴 +s 𝐶)} |
18 | 16, 17 | eqtr4di 2798 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} = {(𝐴 +s 𝐶)}) |
19 | | oveq2 7456 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → (𝐶 +s 𝑦) = (𝐶 +s 𝐴)) |
20 | 19 | eqeq2d 2751 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐴))) |
21 | 20 | rexsng 4698 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈
No → (∃𝑦
∈ {𝐴}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐴))) |
22 | 2, 21 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐴))) |
23 | 7, 2 | addscomd 28018 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 +s 𝐴) = (𝐴 +s 𝐶)) |
24 | 23 | eqeq2d 2751 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 = (𝐶 +s 𝐴) ↔ 𝑥 = (𝐴 +s 𝐶))) |
25 | 22, 24 | bitrd 279 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐴 +s 𝐶))) |
26 | 25 | abbidv 2811 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)} = {𝑥 ∣ 𝑥 = (𝐴 +s 𝐶)}) |
27 | 26, 17 | eqtr4di 2798 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)} = {(𝐴 +s 𝐶)}) |
28 | 18, 27 | uneq12d 4192 |
. . . . . . 7
⊢ (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) = ({(𝐴 +s 𝐶)} ∪ {(𝐴 +s 𝐶)})) |
29 | | unidm 4180 |
. . . . . . 7
⊢ ({(𝐴 +s 𝐶)} ∪ {(𝐴 +s 𝐶)}) = {(𝐴 +s 𝐶)} |
30 | 28, 29 | eqtrdi 2796 |
. . . . . 6
⊢ (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) = {(𝐴 +s 𝐶)}) |
31 | | oveq1 7455 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (𝑦 +s 𝐶) = (𝐵 +s 𝐶)) |
32 | 31 | eqeq2d 2751 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → (𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐵 +s 𝐶))) |
33 | 32 | rexsng 4698 |
. . . . . . . . . . 11
⊢ (𝐵 ∈
No → (∃𝑦
∈ {𝐵}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐵 +s 𝐶))) |
34 | 3, 33 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐵 +s 𝐶))) |
35 | 34 | abbidv 2811 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} = {𝑥 ∣ 𝑥 = (𝐵 +s 𝐶)}) |
36 | | df-sn 4649 |
. . . . . . . . 9
⊢ {(𝐵 +s 𝐶)} = {𝑥 ∣ 𝑥 = (𝐵 +s 𝐶)} |
37 | 35, 36 | eqtr4di 2798 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} = {(𝐵 +s 𝐶)}) |
38 | | oveq2 7456 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → (𝐶 +s 𝑦) = (𝐶 +s 𝐵)) |
39 | 38 | eqeq2d 2751 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐵))) |
40 | 39 | rexsng 4698 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈
No → (∃𝑦
∈ {𝐵}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐵))) |
41 | 3, 40 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐵))) |
42 | 7, 3 | addscomd 28018 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 +s 𝐵) = (𝐵 +s 𝐶)) |
43 | 42 | eqeq2d 2751 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 = (𝐶 +s 𝐵) ↔ 𝑥 = (𝐵 +s 𝐶))) |
44 | 41, 43 | bitrd 279 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐵 +s 𝐶))) |
45 | 44 | abbidv 2811 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)} = {𝑥 ∣ 𝑥 = (𝐵 +s 𝐶)}) |
46 | 45, 36 | eqtr4di 2798 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)} = {(𝐵 +s 𝐶)}) |
47 | 37, 46 | uneq12d 4192 |
. . . . . . 7
⊢ (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)}) = ({(𝐵 +s 𝐶)} ∪ {(𝐵 +s 𝐶)})) |
48 | | unidm 4180 |
. . . . . . 7
⊢ ({(𝐵 +s 𝐶)} ∪ {(𝐵 +s 𝐶)}) = {(𝐵 +s 𝐶)} |
49 | 47, 48 | eqtrdi 2796 |
. . . . . 6
⊢ (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)}) = {(𝐵 +s 𝐶)}) |
50 | 30, 49 | oveq12d 7466 |
. . . . 5
⊢ (𝜑 → (({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)})) = ({(𝐴 +s 𝐶)} |s {(𝐵 +s 𝐶)})) |
51 | | 2sno 28421 |
. . . . . . . . 9
⊢
2s ∈ No |
52 | 51 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2s ∈ No ) |
53 | 52, 2 | mulscld 28179 |
. . . . . . 7
⊢ (𝜑 → (2s
·s 𝐴)
∈ No ) |
54 | 52, 3 | mulscld 28179 |
. . . . . . 7
⊢ (𝜑 → (2s
·s 𝐵)
∈ No ) |
55 | | 2nns 28420 |
. . . . . . . . . 10
⊢
2s ∈ ℕs |
56 | | nnsgt0 28360 |
. . . . . . . . . 10
⊢
(2s ∈ ℕs → 0s <s
2s) |
57 | 55, 56 | mp1i 13 |
. . . . . . . . 9
⊢ (𝜑 → 0s <s
2s) |
58 | 2, 3, 52, 57 | sltmul2d 28216 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (2s ·s
𝐴) <s (2s
·s 𝐵))) |
59 | 4, 58 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (2s
·s 𝐴)
<s (2s ·s 𝐵)) |
60 | 53, 54, 59 | ssltsn 27855 |
. . . . . 6
⊢ (𝜑 → {(2s
·s 𝐴)}
<<s {(2s ·s 𝐵)}) |
61 | 2, 7 | addscld 28031 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 +s 𝐶) ∈ No
) |
62 | | no2times 28419 |
. . . . . . . . . 10
⊢ (𝐴 ∈
No → (2s ·s 𝐴) = (𝐴 +s 𝐴)) |
63 | 2, 62 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (2s
·s 𝐴) =
(𝐴 +s 𝐴)) |
64 | | slerflex 27826 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈
No → 𝐴 ≤s
𝐴) |
65 | 2, 64 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ≤s 𝐴) |
66 | | breq2 5170 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐴 → (𝐴 ≤s 𝑥 ↔ 𝐴 ≤s 𝐴)) |
67 | 66 | rexsng 4698 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈
No → (∃𝑥
∈ {𝐴}𝐴 ≤s 𝑥 ↔ 𝐴 ≤s 𝐴)) |
68 | 2, 67 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥 ↔ 𝐴 ≤s 𝐴)) |
69 | 65, 68 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥) |
70 | 69 | orcd 872 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥 ∨ ∃𝑦 ∈ ( R ‘𝐴)𝑦 ≤s 𝐶)) |
71 | | lltropt 27929 |
. . . . . . . . . . . . 13
⊢ ( L
‘𝐴) <<s ( R
‘𝐴) |
72 | 71 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴)) |
73 | | lrcut 27959 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈
No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) |
74 | 2, 73 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) |
75 | 74 | eqcomd 2746 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 = (( L ‘𝐴) |s ( R ‘𝐴))) |
76 | | sltrec 27883 |
. . . . . . . . . . . 12
⊢ (((( L
‘𝐴) <<s ( R
‘𝐴) ∧ {𝐴} <<s {𝐵}) ∧ (𝐴 = (( L ‘𝐴) |s ( R ‘𝐴)) ∧ 𝐶 = ({𝐴} |s {𝐵}))) → (𝐴 <s 𝐶 ↔ (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥 ∨ ∃𝑦 ∈ ( R ‘𝐴)𝑦 ≤s 𝐶))) |
77 | 72, 5, 75, 10, 76 | syl22anc 838 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 <s 𝐶 ↔ (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥 ∨ ∃𝑦 ∈ ( R ‘𝐴)𝑦 ≤s 𝐶))) |
78 | 70, 77 | mpbird 257 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 <s 𝐶) |
79 | 2, 7, 2 | sltadd2d 28048 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 <s 𝐶 ↔ (𝐴 +s 𝐴) <s (𝐴 +s 𝐶))) |
80 | 78, 79 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 +s 𝐴) <s (𝐴 +s 𝐶)) |
81 | 63, 80 | eqbrtrd 5188 |
. . . . . . . 8
⊢ (𝜑 → (2s
·s 𝐴)
<s (𝐴 +s
𝐶)) |
82 | 53, 61, 81 | sltled 27832 |
. . . . . . 7
⊢ (𝜑 → (2s
·s 𝐴)
≤s (𝐴 +s
𝐶)) |
83 | | ovex 7481 |
. . . . . . . . . 10
⊢ (𝐴 +s 𝐶) ∈ V |
84 | | breq2 5170 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐴 +s 𝐶) → (𝑥 ≤s 𝑦 ↔ 𝑥 ≤s (𝐴 +s 𝐶))) |
85 | 83, 84 | rexsn 4706 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
{(𝐴 +s 𝐶)}𝑥 ≤s 𝑦 ↔ 𝑥 ≤s (𝐴 +s 𝐶)) |
86 | 85 | ralbii 3099 |
. . . . . . . 8
⊢
(∀𝑥 ∈
{(2s ·s 𝐴)}∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦 ↔ ∀𝑥 ∈ {(2s ·s
𝐴)}𝑥 ≤s (𝐴 +s 𝐶)) |
87 | | ovex 7481 |
. . . . . . . . 9
⊢
(2s ·s 𝐴) ∈ V |
88 | | breq1 5169 |
. . . . . . . . 9
⊢ (𝑥 = (2s
·s 𝐴)
→ (𝑥 ≤s (𝐴 +s 𝐶) ↔ (2s ·s
𝐴) ≤s (𝐴 +s 𝐶))) |
89 | 87, 88 | ralsn 4705 |
. . . . . . . 8
⊢
(∀𝑥 ∈
{(2s ·s 𝐴)}𝑥 ≤s (𝐴 +s 𝐶) ↔ (2s ·s
𝐴) ≤s (𝐴 +s 𝐶)) |
90 | 86, 89 | bitri 275 |
. . . . . . 7
⊢
(∀𝑥 ∈
{(2s ·s 𝐴)}∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦 ↔ (2s ·s
𝐴) ≤s (𝐴 +s 𝐶)) |
91 | 82, 90 | sylibr 234 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ {(2s ·s
𝐴)}∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦) |
92 | 3, 7 | addscld 28031 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 +s 𝐶) ∈ No
) |
93 | | slerflex 27826 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈
No → 𝐵 ≤s
𝐵) |
94 | 3, 93 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ≤s 𝐵) |
95 | | breq1 5169 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → (𝑦 ≤s 𝐵 ↔ 𝐵 ≤s 𝐵)) |
96 | 95 | rexsng 4698 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈
No → (∃𝑦
∈ {𝐵}𝑦 ≤s 𝐵 ↔ 𝐵 ≤s 𝐵)) |
97 | 3, 96 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵 ↔ 𝐵 ≤s 𝐵)) |
98 | 94, 97 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵) |
99 | 98 | olcd 873 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑥 ∈ ( L ‘𝐵)𝐶 ≤s 𝑥 ∨ ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵)) |
100 | | lltropt 27929 |
. . . . . . . . . . . . 13
⊢ ( L
‘𝐵) <<s ( R
‘𝐵) |
101 | 100 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ( L ‘𝐵) <<s ( R ‘𝐵)) |
102 | | lrcut 27959 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈
No → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵) |
103 | 3, 102 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵) |
104 | 103 | eqcomd 2746 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 = (( L ‘𝐵) |s ( R ‘𝐵))) |
105 | | sltrec 27883 |
. . . . . . . . . . . 12
⊢ ((({𝐴} <<s {𝐵} ∧ ( L ‘𝐵) <<s ( R ‘𝐵)) ∧ (𝐶 = ({𝐴} |s {𝐵}) ∧ 𝐵 = (( L ‘𝐵) |s ( R ‘𝐵)))) → (𝐶 <s 𝐵 ↔ (∃𝑥 ∈ ( L ‘𝐵)𝐶 ≤s 𝑥 ∨ ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵))) |
106 | 5, 101, 10, 104, 105 | syl22anc 838 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 <s 𝐵 ↔ (∃𝑥 ∈ ( L ‘𝐵)𝐶 ≤s 𝑥 ∨ ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵))) |
107 | 99, 106 | mpbird 257 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 <s 𝐵) |
108 | 7, 3, 3 | sltadd2d 28048 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 <s 𝐵 ↔ (𝐵 +s 𝐶) <s (𝐵 +s 𝐵))) |
109 | 107, 108 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 +s 𝐶) <s (𝐵 +s 𝐵)) |
110 | | no2times 28419 |
. . . . . . . . . 10
⊢ (𝐵 ∈
No → (2s ·s 𝐵) = (𝐵 +s 𝐵)) |
111 | 3, 110 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (2s
·s 𝐵) =
(𝐵 +s 𝐵)) |
112 | 109, 111 | breqtrrd 5194 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 +s 𝐶) <s (2s ·s
𝐵)) |
113 | 92, 54, 112 | sltled 27832 |
. . . . . . 7
⊢ (𝜑 → (𝐵 +s 𝐶) ≤s (2s ·s
𝐵)) |
114 | | ovex 7481 |
. . . . . . . . . 10
⊢ (𝐵 +s 𝐶) ∈ V |
115 | | breq1 5169 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐵 +s 𝐶) → (𝑦 ≤s 𝑥 ↔ (𝐵 +s 𝐶) ≤s 𝑥)) |
116 | 114, 115 | rexsn 4706 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
{(𝐵 +s 𝐶)}𝑦 ≤s 𝑥 ↔ (𝐵 +s 𝐶) ≤s 𝑥) |
117 | 116 | ralbii 3099 |
. . . . . . . 8
⊢
(∀𝑥 ∈
{(2s ·s 𝐵)}∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥 ↔ ∀𝑥 ∈ {(2s ·s
𝐵)} (𝐵 +s 𝐶) ≤s 𝑥) |
118 | | ovex 7481 |
. . . . . . . . 9
⊢
(2s ·s 𝐵) ∈ V |
119 | | breq2 5170 |
. . . . . . . . 9
⊢ (𝑥 = (2s
·s 𝐵)
→ ((𝐵 +s
𝐶) ≤s 𝑥 ↔ (𝐵 +s 𝐶) ≤s (2s ·s
𝐵))) |
120 | 118, 119 | ralsn 4705 |
. . . . . . . 8
⊢
(∀𝑥 ∈
{(2s ·s 𝐵)} (𝐵 +s 𝐶) ≤s 𝑥 ↔ (𝐵 +s 𝐶) ≤s (2s ·s
𝐵)) |
121 | 117, 120 | bitri 275 |
. . . . . . 7
⊢
(∀𝑥 ∈
{(2s ·s 𝐵)}∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥 ↔ (𝐵 +s 𝐶) ≤s (2s ·s
𝐵)) |
122 | 113, 121 | sylibr 234 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ {(2s ·s
𝐵)}∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥) |
123 | 2, 3 | addscld 28031 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 +s 𝐵) ∈ No
) |
124 | 7, 3, 2 | sltadd2d 28048 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 <s 𝐵 ↔ (𝐴 +s 𝐶) <s (𝐴 +s 𝐵))) |
125 | 107, 124 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 +s 𝐶) <s (𝐴 +s 𝐵)) |
126 | 61, 123, 125 | ssltsn 27855 |
. . . . . . 7
⊢ (𝜑 → {(𝐴 +s 𝐶)} <<s {(𝐴 +s 𝐵)}) |
127 | | halfcut.4 |
. . . . . . . 8
⊢ (𝜑 → ({(2s
·s 𝐴)} |s
{(2s ·s 𝐵)}) = (𝐴 +s 𝐵)) |
128 | 127 | sneqd 4660 |
. . . . . . 7
⊢ (𝜑 → {({(2s
·s 𝐴)} |s
{(2s ·s 𝐵)})} = {(𝐴 +s 𝐵)}) |
129 | 126, 128 | breqtrrd 5194 |
. . . . . 6
⊢ (𝜑 → {(𝐴 +s 𝐶)} <<s {({(2s
·s 𝐴)} |s
{(2s ·s 𝐵)})}) |
130 | 2, 3 | addscomd 28018 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) |
131 | 2, 7, 3 | sltadd2d 28048 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 <s 𝐶 ↔ (𝐵 +s 𝐴) <s (𝐵 +s 𝐶))) |
132 | 78, 131 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 +s 𝐴) <s (𝐵 +s 𝐶)) |
133 | 130, 132 | eqbrtrd 5188 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 +s 𝐵) <s (𝐵 +s 𝐶)) |
134 | 123, 92, 133 | ssltsn 27855 |
. . . . . . 7
⊢ (𝜑 → {(𝐴 +s 𝐵)} <<s {(𝐵 +s 𝐶)}) |
135 | 128, 134 | eqbrtrd 5188 |
. . . . . 6
⊢ (𝜑 → {({(2s
·s 𝐴)} |s
{(2s ·s 𝐵)})} <<s {(𝐵 +s 𝐶)}) |
136 | 60, 91, 122, 129, 135 | cofcut1d 27973 |
. . . . 5
⊢ (𝜑 → ({(2s
·s 𝐴)} |s
{(2s ·s 𝐵)}) = ({(𝐴 +s 𝐶)} |s {(𝐵 +s 𝐶)})) |
137 | 50, 136, 127 | 3eqtr2d 2786 |
. . . 4
⊢ (𝜑 → (({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)})) = (𝐴 +s 𝐵)) |
138 | 9, 11, 137 | 3eqtrd 2784 |
. . 3
⊢ (𝜑 → (2s
·s 𝐶) =
(𝐴 +s 𝐵)) |
139 | | 2ne0s 28422 |
. . . . 5
⊢
2s ≠ 0s |
140 | 139 | a1i 11 |
. . . 4
⊢ (𝜑 → 2s ≠
0s ) |
141 | 123, 7, 52, 140 | divsmuld 28264 |
. . 3
⊢ (𝜑 → (((𝐴 +s 𝐵) /su 2s) = 𝐶 ↔ (2s
·s 𝐶) =
(𝐴 +s 𝐵))) |
142 | 138, 141 | mpbird 257 |
. 2
⊢ (𝜑 → ((𝐴 +s 𝐵) /su 2s) = 𝐶) |
143 | 142 | eqcomd 2746 |
1
⊢ (𝜑 → 𝐶 = ((𝐴 +s 𝐵) /su
2s)) |