| Step | Hyp | Ref
| Expression |
| 1 | | halfcut.5 |
. . . . . 6
⊢ 𝐶 = ({𝐴} |s {𝐵}) |
| 2 | | halfcut.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ No
) |
| 3 | | halfcut.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ No
) |
| 4 | | halfcut.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 <s 𝐵) |
| 5 | 2, 3, 4 | ssltsn 27738 |
. . . . . . 7
⊢ (𝜑 → {𝐴} <<s {𝐵}) |
| 6 | 5 | scutcld 27749 |
. . . . . 6
⊢ (𝜑 → ({𝐴} |s {𝐵}) ∈ No
) |
| 7 | 1, 6 | eqeltrid 2832 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ No
) |
| 8 | | no2times 28344 |
. . . . 5
⊢ (𝐶 ∈
No → (2s ·s 𝐶) = (𝐶 +s 𝐶)) |
| 9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → (2s
·s 𝐶) =
(𝐶 +s 𝐶)) |
| 10 | 1 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝐶 = ({𝐴} |s {𝐵})) |
| 11 | 5, 5, 10, 10 | addsunif 27949 |
. . . . 5
⊢ (𝜑 → (𝐶 +s 𝐶) = (({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)}))) |
| 12 | | oveq1 7376 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (𝑦 +s 𝐶) = (𝐴 +s 𝐶)) |
| 13 | 12 | eqeq2d 2740 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → (𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐴 +s 𝐶))) |
| 14 | 13 | rexsng 4636 |
. . . . . . . . . . 11
⊢ (𝐴 ∈
No → (∃𝑦
∈ {𝐴}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐴 +s 𝐶))) |
| 15 | 2, 14 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐴 +s 𝐶))) |
| 16 | 15 | abbidv 2795 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} = {𝑥 ∣ 𝑥 = (𝐴 +s 𝐶)}) |
| 17 | | oveq2 7377 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → (𝐶 +s 𝑦) = (𝐶 +s 𝐴)) |
| 18 | 17 | eqeq2d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐴))) |
| 19 | 18 | rexsng 4636 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈
No → (∃𝑦
∈ {𝐴}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐴))) |
| 20 | 2, 19 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐴))) |
| 21 | 7, 2 | addscomd 27914 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 +s 𝐴) = (𝐴 +s 𝐶)) |
| 22 | 21 | eqeq2d 2740 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 = (𝐶 +s 𝐴) ↔ 𝑥 = (𝐴 +s 𝐶))) |
| 23 | 20, 22 | bitrd 279 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐴 +s 𝐶))) |
| 24 | 23 | abbidv 2795 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)} = {𝑥 ∣ 𝑥 = (𝐴 +s 𝐶)}) |
| 25 | 16, 24 | uneq12d 4128 |
. . . . . . . 8
⊢ (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) = ({𝑥 ∣ 𝑥 = (𝐴 +s 𝐶)} ∪ {𝑥 ∣ 𝑥 = (𝐴 +s 𝐶)})) |
| 26 | | df-sn 4586 |
. . . . . . . . 9
⊢ {(𝐴 +s 𝐶)} = {𝑥 ∣ 𝑥 = (𝐴 +s 𝐶)} |
| 27 | | unidm 4116 |
. . . . . . . . 9
⊢ ({𝑥 ∣ 𝑥 = (𝐴 +s 𝐶)} ∪ {𝑥 ∣ 𝑥 = (𝐴 +s 𝐶)}) = {𝑥 ∣ 𝑥 = (𝐴 +s 𝐶)} |
| 28 | 26, 27 | eqtr4i 2755 |
. . . . . . . 8
⊢ {(𝐴 +s 𝐶)} = ({𝑥 ∣ 𝑥 = (𝐴 +s 𝐶)} ∪ {𝑥 ∣ 𝑥 = (𝐴 +s 𝐶)}) |
| 29 | 25, 28 | eqtr4di 2782 |
. . . . . . 7
⊢ (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) = {(𝐴 +s 𝐶)}) |
| 30 | | oveq1 7376 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (𝑦 +s 𝐶) = (𝐵 +s 𝐶)) |
| 31 | 30 | eqeq2d 2740 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → (𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐵 +s 𝐶))) |
| 32 | 31 | rexsng 4636 |
. . . . . . . . . . 11
⊢ (𝐵 ∈
No → (∃𝑦
∈ {𝐵}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐵 +s 𝐶))) |
| 33 | 3, 32 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶) ↔ 𝑥 = (𝐵 +s 𝐶))) |
| 34 | 33 | abbidv 2795 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} = {𝑥 ∣ 𝑥 = (𝐵 +s 𝐶)}) |
| 35 | | oveq2 7377 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → (𝐶 +s 𝑦) = (𝐶 +s 𝐵)) |
| 36 | 35 | eqeq2d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐵))) |
| 37 | 36 | rexsng 4636 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈
No → (∃𝑦
∈ {𝐵}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐵))) |
| 38 | 3, 37 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐶 +s 𝐵))) |
| 39 | 7, 3 | addscomd 27914 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 +s 𝐵) = (𝐵 +s 𝐶)) |
| 40 | 39 | eqeq2d 2740 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 = (𝐶 +s 𝐵) ↔ 𝑥 = (𝐵 +s 𝐶))) |
| 41 | 38, 40 | bitrd 279 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦) ↔ 𝑥 = (𝐵 +s 𝐶))) |
| 42 | 41 | abbidv 2795 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)} = {𝑥 ∣ 𝑥 = (𝐵 +s 𝐶)}) |
| 43 | 34, 42 | uneq12d 4128 |
. . . . . . . 8
⊢ (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)}) = ({𝑥 ∣ 𝑥 = (𝐵 +s 𝐶)} ∪ {𝑥 ∣ 𝑥 = (𝐵 +s 𝐶)})) |
| 44 | | df-sn 4586 |
. . . . . . . . 9
⊢ {(𝐵 +s 𝐶)} = {𝑥 ∣ 𝑥 = (𝐵 +s 𝐶)} |
| 45 | | unidm 4116 |
. . . . . . . . 9
⊢ ({𝑥 ∣ 𝑥 = (𝐵 +s 𝐶)} ∪ {𝑥 ∣ 𝑥 = (𝐵 +s 𝐶)}) = {𝑥 ∣ 𝑥 = (𝐵 +s 𝐶)} |
| 46 | 44, 45 | eqtr4i 2755 |
. . . . . . . 8
⊢ {(𝐵 +s 𝐶)} = ({𝑥 ∣ 𝑥 = (𝐵 +s 𝐶)} ∪ {𝑥 ∣ 𝑥 = (𝐵 +s 𝐶)}) |
| 47 | 43, 46 | eqtr4di 2782 |
. . . . . . 7
⊢ (𝜑 → ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)}) = {(𝐵 +s 𝐶)}) |
| 48 | 29, 47 | oveq12d 7387 |
. . . . . 6
⊢ (𝜑 → (({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)})) = ({(𝐴 +s 𝐶)} |s {(𝐵 +s 𝐶)})) |
| 49 | | 2sno 28346 |
. . . . . . . . . 10
⊢
2s ∈ No |
| 50 | 49 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 2s ∈ No ) |
| 51 | 50, 2 | mulscld 28078 |
. . . . . . . 8
⊢ (𝜑 → (2s
·s 𝐴)
∈ No ) |
| 52 | 50, 3 | mulscld 28078 |
. . . . . . . 8
⊢ (𝜑 → (2s
·s 𝐵)
∈ No ) |
| 53 | | 2nns 28345 |
. . . . . . . . . . 11
⊢
2s ∈ ℕs |
| 54 | | nnsgt0 28271 |
. . . . . . . . . . 11
⊢
(2s ∈ ℕs → 0s <s
2s) |
| 55 | 53, 54 | mp1i 13 |
. . . . . . . . . 10
⊢ (𝜑 → 0s <s
2s) |
| 56 | 2, 3, 50, 55 | sltmul2d 28115 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (2s ·s
𝐴) <s (2s
·s 𝐵))) |
| 57 | 4, 56 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → (2s
·s 𝐴)
<s (2s ·s 𝐵)) |
| 58 | 51, 52, 57 | ssltsn 27738 |
. . . . . . 7
⊢ (𝜑 → {(2s
·s 𝐴)}
<<s {(2s ·s 𝐵)}) |
| 59 | | no2times 28344 |
. . . . . . . . . 10
⊢ (𝐴 ∈
No → (2s ·s 𝐴) = (𝐴 +s 𝐴)) |
| 60 | 2, 59 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (2s
·s 𝐴) =
(𝐴 +s 𝐴)) |
| 61 | | slerflex 27708 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈
No → 𝐴 ≤s
𝐴) |
| 62 | 2, 61 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ≤s 𝐴) |
| 63 | | breq2 5106 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐴 → (𝐴 ≤s 𝑥 ↔ 𝐴 ≤s 𝐴)) |
| 64 | 63 | rexsng 4636 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈
No → (∃𝑥
∈ {𝐴}𝐴 ≤s 𝑥 ↔ 𝐴 ≤s 𝐴)) |
| 65 | 2, 64 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥 ↔ 𝐴 ≤s 𝐴)) |
| 66 | 62, 65 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥) |
| 67 | 66 | orcd 873 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥 ∨ ∃𝑦 ∈ ( R ‘𝐴)𝑦 ≤s 𝐶)) |
| 68 | | lltropt 27821 |
. . . . . . . . . . . . . 14
⊢ ( L
‘𝐴) <<s ( R
‘𝐴) |
| 69 | 68 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ( L ‘𝐴) <<s ( R ‘𝐴)) |
| 70 | | lrcut 27853 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈
No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) |
| 71 | 2, 70 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) |
| 72 | 71 | eqcomd 2735 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 = (( L ‘𝐴) |s ( R ‘𝐴))) |
| 73 | 69, 5, 72, 10 | sltrecd 27768 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 <s 𝐶 ↔ (∃𝑥 ∈ {𝐴}𝐴 ≤s 𝑥 ∨ ∃𝑦 ∈ ( R ‘𝐴)𝑦 ≤s 𝐶))) |
| 74 | 67, 73 | mpbird 257 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 <s 𝐶) |
| 75 | 2, 7, 74 | sltled 27714 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ≤s 𝐶) |
| 76 | 2, 7, 2 | sleadd2d 27943 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ≤s 𝐶 ↔ (𝐴 +s 𝐴) ≤s (𝐴 +s 𝐶))) |
| 77 | 75, 76 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 +s 𝐴) ≤s (𝐴 +s 𝐶)) |
| 78 | 60, 77 | eqbrtrd 5124 |
. . . . . . . 8
⊢ (𝜑 → (2s
·s 𝐴)
≤s (𝐴 +s
𝐶)) |
| 79 | | ovex 7402 |
. . . . . . . . . 10
⊢
(2s ·s 𝐴) ∈ V |
| 80 | | breq1 5105 |
. . . . . . . . . . 11
⊢ (𝑥 = (2s
·s 𝐴)
→ (𝑥 ≤s 𝑦 ↔ (2s
·s 𝐴)
≤s 𝑦)) |
| 81 | 80 | rexbidv 3157 |
. . . . . . . . . 10
⊢ (𝑥 = (2s
·s 𝐴)
→ (∃𝑦 ∈
{(𝐴 +s 𝐶)}𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ {(𝐴 +s 𝐶)} (2s ·s 𝐴) ≤s 𝑦)) |
| 82 | 79, 81 | ralsn 4641 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
{(2s ·s 𝐴)}∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦 ↔ ∃𝑦 ∈ {(𝐴 +s 𝐶)} (2s ·s 𝐴) ≤s 𝑦) |
| 83 | | ovex 7402 |
. . . . . . . . . 10
⊢ (𝐴 +s 𝐶) ∈ V |
| 84 | | breq2 5106 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐴 +s 𝐶) → ((2s
·s 𝐴)
≤s 𝑦 ↔
(2s ·s 𝐴) ≤s (𝐴 +s 𝐶))) |
| 85 | 83, 84 | rexsn 4642 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
{(𝐴 +s 𝐶)} (2s
·s 𝐴)
≤s 𝑦 ↔
(2s ·s 𝐴) ≤s (𝐴 +s 𝐶)) |
| 86 | 82, 85 | bitri 275 |
. . . . . . . 8
⊢
(∀𝑥 ∈
{(2s ·s 𝐴)}∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦 ↔ (2s ·s
𝐴) ≤s (𝐴 +s 𝐶)) |
| 87 | 78, 86 | sylibr 234 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ {(2s ·s
𝐴)}∃𝑦 ∈ {(𝐴 +s 𝐶)}𝑥 ≤s 𝑦) |
| 88 | | slerflex 27708 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈
No → 𝐵 ≤s
𝐵) |
| 89 | 3, 88 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ≤s 𝐵) |
| 90 | | breq1 5105 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐵 → (𝑦 ≤s 𝐵 ↔ 𝐵 ≤s 𝐵)) |
| 91 | 90 | rexsng 4636 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈
No → (∃𝑦
∈ {𝐵}𝑦 ≤s 𝐵 ↔ 𝐵 ≤s 𝐵)) |
| 92 | 3, 91 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵 ↔ 𝐵 ≤s 𝐵)) |
| 93 | 89, 92 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵) |
| 94 | 93 | olcd 874 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∃𝑥 ∈ ( L ‘𝐵)𝐶 ≤s 𝑥 ∨ ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵)) |
| 95 | | lltropt 27821 |
. . . . . . . . . . . . . 14
⊢ ( L
‘𝐵) <<s ( R
‘𝐵) |
| 96 | 95 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ( L ‘𝐵) <<s ( R ‘𝐵)) |
| 97 | | lrcut 27853 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈
No → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵) |
| 98 | 3, 97 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (( L ‘𝐵) |s ( R ‘𝐵)) = 𝐵) |
| 99 | 98 | eqcomd 2735 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 = (( L ‘𝐵) |s ( R ‘𝐵))) |
| 100 | 5, 96, 10, 99 | sltrecd 27768 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶 <s 𝐵 ↔ (∃𝑥 ∈ ( L ‘𝐵)𝐶 ≤s 𝑥 ∨ ∃𝑦 ∈ {𝐵}𝑦 ≤s 𝐵))) |
| 101 | 94, 100 | mpbird 257 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 <s 𝐵) |
| 102 | 7, 3, 101 | sltled 27714 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ≤s 𝐵) |
| 103 | 7, 3, 3 | sleadd2d 27943 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 ≤s 𝐵 ↔ (𝐵 +s 𝐶) ≤s (𝐵 +s 𝐵))) |
| 104 | 102, 103 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 +s 𝐶) ≤s (𝐵 +s 𝐵)) |
| 105 | | no2times 28344 |
. . . . . . . . . 10
⊢ (𝐵 ∈
No → (2s ·s 𝐵) = (𝐵 +s 𝐵)) |
| 106 | 3, 105 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (2s
·s 𝐵) =
(𝐵 +s 𝐵)) |
| 107 | 104, 106 | breqtrrd 5130 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 +s 𝐶) ≤s (2s ·s
𝐵)) |
| 108 | | ovex 7402 |
. . . . . . . . . 10
⊢
(2s ·s 𝐵) ∈ V |
| 109 | | breq2 5106 |
. . . . . . . . . . 11
⊢ (𝑥 = (2s
·s 𝐵)
→ (𝑦 ≤s 𝑥 ↔ 𝑦 ≤s (2s ·s
𝐵))) |
| 110 | 109 | rexbidv 3157 |
. . . . . . . . . 10
⊢ (𝑥 = (2s
·s 𝐵)
→ (∃𝑦 ∈
{(𝐵 +s 𝐶)}𝑦 ≤s 𝑥 ↔ ∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s (2s ·s
𝐵))) |
| 111 | 108, 110 | ralsn 4641 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
{(2s ·s 𝐵)}∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥 ↔ ∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s (2s ·s
𝐵)) |
| 112 | | ovex 7402 |
. . . . . . . . . 10
⊢ (𝐵 +s 𝐶) ∈ V |
| 113 | | breq1 5105 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐵 +s 𝐶) → (𝑦 ≤s (2s ·s
𝐵) ↔ (𝐵 +s 𝐶) ≤s (2s ·s
𝐵))) |
| 114 | 112, 113 | rexsn 4642 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
{(𝐵 +s 𝐶)}𝑦 ≤s (2s ·s
𝐵) ↔ (𝐵 +s 𝐶) ≤s (2s ·s
𝐵)) |
| 115 | 111, 114 | bitri 275 |
. . . . . . . 8
⊢
(∀𝑥 ∈
{(2s ·s 𝐵)}∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥 ↔ (𝐵 +s 𝐶) ≤s (2s ·s
𝐵)) |
| 116 | 107, 115 | sylibr 234 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ {(2s ·s
𝐵)}∃𝑦 ∈ {(𝐵 +s 𝐶)}𝑦 ≤s 𝑥) |
| 117 | 2, 7 | addscld 27927 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 +s 𝐶) ∈ No
) |
| 118 | 2, 3 | addscld 27927 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 +s 𝐵) ∈ No
) |
| 119 | 7, 3, 2 | sltadd2d 27944 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 <s 𝐵 ↔ (𝐴 +s 𝐶) <s (𝐴 +s 𝐵))) |
| 120 | 101, 119 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 +s 𝐶) <s (𝐴 +s 𝐵)) |
| 121 | 117, 118,
120 | ssltsn 27738 |
. . . . . . . 8
⊢ (𝜑 → {(𝐴 +s 𝐶)} <<s {(𝐴 +s 𝐵)}) |
| 122 | | halfcut.4 |
. . . . . . . . 9
⊢ (𝜑 → ({(2s
·s 𝐴)} |s
{(2s ·s 𝐵)}) = (𝐴 +s 𝐵)) |
| 123 | 122 | sneqd 4597 |
. . . . . . . 8
⊢ (𝜑 → {({(2s
·s 𝐴)} |s
{(2s ·s 𝐵)})} = {(𝐴 +s 𝐵)}) |
| 124 | 121, 123 | breqtrrd 5130 |
. . . . . . 7
⊢ (𝜑 → {(𝐴 +s 𝐶)} <<s {({(2s
·s 𝐴)} |s
{(2s ·s 𝐵)})}) |
| 125 | 3, 7 | addscld 27927 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 +s 𝐶) ∈ No
) |
| 126 | 3, 2 | addscomd 27914 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 +s 𝐴) = (𝐴 +s 𝐵)) |
| 127 | 2, 7, 3 | sltadd2d 27944 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 <s 𝐶 ↔ (𝐵 +s 𝐴) <s (𝐵 +s 𝐶))) |
| 128 | 74, 127 | mpbid 232 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 +s 𝐴) <s (𝐵 +s 𝐶)) |
| 129 | 126, 128 | eqbrtrrd 5126 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 +s 𝐵) <s (𝐵 +s 𝐶)) |
| 130 | 118, 125,
129 | ssltsn 27738 |
. . . . . . . 8
⊢ (𝜑 → {(𝐴 +s 𝐵)} <<s {(𝐵 +s 𝐶)}) |
| 131 | 123, 130 | eqbrtrd 5124 |
. . . . . . 7
⊢ (𝜑 → {({(2s
·s 𝐴)} |s
{(2s ·s 𝐵)})} <<s {(𝐵 +s 𝐶)}) |
| 132 | 58, 87, 116, 124, 131 | cofcut1d 27869 |
. . . . . 6
⊢ (𝜑 → ({(2s
·s 𝐴)} |s
{(2s ·s 𝐵)}) = ({(𝐴 +s 𝐶)} |s {(𝐵 +s 𝐶)})) |
| 133 | 48, 132, 122 | 3eqtr2d 2770 |
. . . . 5
⊢ (𝜑 → (({𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐴}𝑥 = (𝐶 +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝑦 +s 𝐶)} ∪ {𝑥 ∣ ∃𝑦 ∈ {𝐵}𝑥 = (𝐶 +s 𝑦)})) = (𝐴 +s 𝐵)) |
| 134 | 11, 133 | eqtrd 2764 |
. . . 4
⊢ (𝜑 → (𝐶 +s 𝐶) = (𝐴 +s 𝐵)) |
| 135 | 9, 134 | eqtrd 2764 |
. . 3
⊢ (𝜑 → (2s
·s 𝐶) =
(𝐴 +s 𝐵)) |
| 136 | | 2ne0s 28347 |
. . . . 5
⊢
2s ≠ 0s |
| 137 | 136 | a1i 11 |
. . . 4
⊢ (𝜑 → 2s ≠
0s ) |
| 138 | | 0sno 27775 |
. . . . . . . . . 10
⊢
0s ∈ No |
| 139 | 138 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ 0s ∈ No ) |
| 140 | | 1sno 27776 |
. . . . . . . . . 10
⊢
1s ∈ No |
| 141 | 140 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ 1s ∈ No ) |
| 142 | | 0slt1s 27778 |
. . . . . . . . . 10
⊢
0s <s 1s |
| 143 | 142 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ 0s <s 1s ) |
| 144 | 139, 141,
143 | ssltsn 27738 |
. . . . . . . 8
⊢ (⊤
→ { 0s } <<s { 1s }) |
| 145 | 144 | scutcld 27749 |
. . . . . . 7
⊢ (⊤
→ ({ 0s } |s { 1s }) ∈
No ) |
| 146 | 145 | mptru 1547 |
. . . . . 6
⊢ ({
0s } |s { 1s }) ∈ No
|
| 147 | | twocut 28350 |
. . . . . 6
⊢
(2s ·s ({ 0s } |s {
1s })) = 1s |
| 148 | | oveq2 7377 |
. . . . . . . 8
⊢ (𝑥 = ({ 0s } |s {
1s }) → (2s ·s 𝑥) = (2s ·s ({
0s } |s { 1s }))) |
| 149 | 148 | eqeq1d 2731 |
. . . . . . 7
⊢ (𝑥 = ({ 0s } |s {
1s }) → ((2s ·s 𝑥) = 1s ↔ (2s
·s ({ 0s } |s { 1s })) = 1s
)) |
| 150 | 149 | rspcev 3585 |
. . . . . 6
⊢ ((({
0s } |s { 1s }) ∈ No
∧ (2s ·s ({ 0s } |s { 1s
})) = 1s ) → ∃𝑥 ∈ No
(2s ·s 𝑥) = 1s ) |
| 151 | 146, 147,
150 | mp2an 692 |
. . . . 5
⊢
∃𝑥 ∈
No (2s ·s 𝑥) =
1s |
| 152 | 151 | a1i 11 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ No
(2s ·s 𝑥) = 1s ) |
| 153 | 118, 7, 50, 137, 152 | divsmulwd 28137 |
. . 3
⊢ (𝜑 → (((𝐴 +s 𝐵) /su 2s) = 𝐶 ↔ (2s
·s 𝐶) =
(𝐴 +s 𝐵))) |
| 154 | 135, 153 | mpbird 257 |
. 2
⊢ (𝜑 → ((𝐴 +s 𝐵) /su 2s) = 𝐶) |
| 155 | 154 | eqcomd 2735 |
1
⊢ (𝜑 → 𝐶 = ((𝐴 +s 𝐵) /su
2s)) |