MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerimplem3 Structured version   Visualization version   GIF version

Theorem cramerimplem3 21287
Description: Lemma 3 for cramerimp 21288: The determinant of the matrix of a system of linear equations multiplied with the determinant of the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the determinant of the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramerimp.a 𝐴 = (𝑁 Mat 𝑅)
cramerimp.b 𝐵 = (Base‘𝐴)
cramerimp.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramerimp.e 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
cramerimp.h 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
cramerimp.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramerimp.d 𝐷 = (𝑁 maDet 𝑅)
cramerimp.t = (.r𝑅)
Assertion
Ref Expression
cramerimplem3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐷𝑋) (𝐷𝐸)) = (𝐷𝐻))

Proof of Theorem cramerimplem3
StepHypRef Expression
1 simpl 486 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ CRing)
2 cramerimp.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
3 cramerimp.b . . . . . . . . . 10 𝐵 = (Base‘𝐴)
42, 3matrcl 21014 . . . . . . . . 9 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
54simpld 498 . . . . . . . 8 (𝑋𝐵𝑁 ∈ Fin)
65adantr 484 . . . . . . 7 ((𝑋𝐵𝑌𝑉) → 𝑁 ∈ Fin)
71, 6anim12ci 616 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
873adant3 1129 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
9 eqid 2824 . . . . . 6 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
102, 9matmulr 21040 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
118, 10syl 17 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
1211oveqd 7162 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝐸) = (𝑋(.r𝐴)𝐸))
1312fveq2d 6662 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝐷‘(𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝐸)) = (𝐷‘(𝑋(.r𝐴)𝐸)))
14 cramerimp.v . . . 4 𝑉 = ((Base‘𝑅) ↑m 𝑁)
15 cramerimp.e . . . 4 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
16 cramerimp.h . . . 4 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
17 cramerimp.x . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
182, 3, 14, 15, 16, 17, 9cramerimplem2 21286 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝐸) = 𝐻)
1918fveq2d 6662 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝐷‘(𝑋(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝐸)) = (𝐷𝐻))
20 simp1l 1194 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑅 ∈ CRing)
21 simp2l 1196 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋𝐵)
22 crngring 19304 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2322adantr 484 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ Ring)
2423, 6anim12i 615 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
25243adant3 1129 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
26 ne0i 4282 . . . . . . . 8 (𝐼𝑁𝑁 ≠ ∅)
2722, 26anim12ci 616 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring))
282, 3, 14, 17slesolvec 21281 . . . . . . 7 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
2927, 28sylan 583 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
30293impia 1114 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍𝑉)
31 simp1r 1195 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐼𝑁)
32 eqid 2824 . . . . . 6 (1r𝐴) = (1r𝐴)
332, 3, 14, 32ma1repvcl 21172 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵)
3425, 30, 31, 33syl12anc 835 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵)
3515, 34eqeltrid 2920 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐸𝐵)
36 cramerimp.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
37 cramerimp.t . . . 4 = (.r𝑅)
38 eqid 2824 . . . 4 (.r𝐴) = (.r𝐴)
392, 3, 36, 37, 38mdetmul 21225 . . 3 ((𝑅 ∈ CRing ∧ 𝑋𝐵𝐸𝐵) → (𝐷‘(𝑋(.r𝐴)𝐸)) = ((𝐷𝑋) (𝐷𝐸)))
4020, 21, 35, 39syl3anc 1368 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝐷‘(𝑋(.r𝐴)𝐸)) = ((𝐷𝑋) (𝐷𝐸)))
4113, 19, 403eqtr3rd 2868 1 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐷𝑋) (𝐷𝐸)) = (𝐷𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  Vcvv 3480  c0 4275  cop 4555  cotp 4557  cfv 6343  (class class class)co 7145  m cmap 8396  Fincfn 8499  Basecbs 16479  .rcmulr 16562  1rcur 19247  Ringcrg 19293  CRingccrg 19294   maMul cmmul 20987   Mat cmat 21009   maVecMul cmvmul 21142   matRepV cmatrepV 21159   maDet cmdat 21186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-ot 4558  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7399  df-om 7571  df-1st 7679  df-2nd 7680  df-supp 7821  df-tpos 7882  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-2o 8093  df-oadd 8096  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8452  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fsupp 8825  df-sup 8897  df-oi 8965  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-4 11695  df-5 11696  df-6 11697  df-7 11698  df-8 11699  df-9 11700  df-n0 11891  df-xnn0 11961  df-z 11975  df-dec 12092  df-uz 12237  df-rp 12383  df-fz 12891  df-fzo 13034  df-seq 13370  df-exp 13431  df-hash 13692  df-word 13863  df-lsw 13911  df-concat 13919  df-s1 13946  df-substr 13999  df-pfx 14029  df-splice 14108  df-reverse 14117  df-s2 14206  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-0g 16711  df-gsum 16712  df-prds 16717  df-pws 16719  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-efmnd 18030  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-ghm 18352  df-gim 18395  df-cntz 18443  df-oppg 18470  df-symg 18492  df-pmtr 18566  df-psgn 18615  df-evpm 18616  df-cmn 18904  df-abl 18905  df-mgp 19236  df-ur 19248  df-srg 19252  df-ring 19295  df-cring 19296  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-cnfld 20539  df-zring 20611  df-zrh 20644  df-dsmm 20869  df-frlm 20884  df-mamu 20988  df-mat 21010  df-mvmul 21143  df-marepv 21161  df-mdet 21187
This theorem is referenced by:  cramerimp  21288
  Copyright terms: Public domain W3C validator