Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matunit | Structured version Visualization version GIF version |
Description: A matrix is a unit in the ring of matrices iff its determinant is a unit in the underlying ring. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
Ref | Expression |
---|---|
matunit.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
matunit.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
matunit.b | ⊢ 𝐵 = (Base‘𝐴) |
matunit.u | ⊢ 𝑈 = (Unit‘𝐴) |
matunit.v | ⊢ 𝑉 = (Unit‘𝑅) |
Ref | Expression |
---|---|
matunit | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑈 ↔ (𝐷‘𝑀) ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2736 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | eqid 2736 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
4 | matunit.v | . . . 4 ⊢ 𝑉 = (Unit‘𝑅) | |
5 | eqid 2736 | . . . 4 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
6 | crngring 19840 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
7 | 6 | ad2antrr 724 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → 𝑅 ∈ Ring) |
8 | matunit.d | . . . . . 6 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
9 | matunit.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
10 | matunit.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
11 | 8, 9, 10, 1 | mdetcl 21790 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) ∈ (Base‘𝑅)) |
12 | 11 | adantr 482 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘𝑀) ∈ (Base‘𝑅)) |
13 | 8, 9, 10, 1 | mdetf 21789 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝐷:𝐵⟶(Base‘𝑅)) |
14 | 13 | ad2antrr 724 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → 𝐷:𝐵⟶(Base‘𝑅)) |
15 | 9, 10 | matrcl 21604 | . . . . . . . . 9 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
16 | 15 | simpld 496 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
17 | 16 | ad2antlr 725 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → 𝑁 ∈ Fin) |
18 | 9 | matring 21637 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
19 | 17, 7, 18 | syl2anc 585 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → 𝐴 ∈ Ring) |
20 | matunit.u | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝐴) | |
21 | eqid 2736 | . . . . . . 7 ⊢ (invr‘𝐴) = (invr‘𝐴) | |
22 | 20, 21, 10 | ringinvcl 19963 | . . . . . 6 ⊢ ((𝐴 ∈ Ring ∧ 𝑀 ∈ 𝑈) → ((invr‘𝐴)‘𝑀) ∈ 𝐵) |
23 | 19, 22 | sylancom 589 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → ((invr‘𝐴)‘𝑀) ∈ 𝐵) |
24 | 14, 23 | ffvelcdmd 6994 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘((invr‘𝐴)‘𝑀)) ∈ (Base‘𝑅)) |
25 | eqid 2736 | . . . . . . . 8 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
26 | eqid 2736 | . . . . . . . 8 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
27 | 20, 21, 25, 26 | unitrinv 19965 | . . . . . . 7 ⊢ ((𝐴 ∈ Ring ∧ 𝑀 ∈ 𝑈) → (𝑀(.r‘𝐴)((invr‘𝐴)‘𝑀)) = (1r‘𝐴)) |
28 | 19, 27 | sylancom 589 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝑀(.r‘𝐴)((invr‘𝐴)‘𝑀)) = (1r‘𝐴)) |
29 | 28 | fveq2d 6808 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘(𝑀(.r‘𝐴)((invr‘𝐴)‘𝑀))) = (𝐷‘(1r‘𝐴))) |
30 | simpll 765 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → 𝑅 ∈ CRing) | |
31 | simplr 767 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → 𝑀 ∈ 𝐵) | |
32 | 9, 10, 8, 2, 25 | mdetmul 21817 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ((invr‘𝐴)‘𝑀) ∈ 𝐵) → (𝐷‘(𝑀(.r‘𝐴)((invr‘𝐴)‘𝑀))) = ((𝐷‘𝑀)(.r‘𝑅)(𝐷‘((invr‘𝐴)‘𝑀)))) |
33 | 30, 31, 23, 32 | syl3anc 1371 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘(𝑀(.r‘𝐴)((invr‘𝐴)‘𝑀))) = ((𝐷‘𝑀)(.r‘𝑅)(𝐷‘((invr‘𝐴)‘𝑀)))) |
34 | 8, 9, 26, 3 | mdet1 21795 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘(1r‘𝐴)) = (1r‘𝑅)) |
35 | 30, 17, 34 | syl2anc 585 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘(1r‘𝐴)) = (1r‘𝑅)) |
36 | 29, 33, 35 | 3eqtr3d 2784 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → ((𝐷‘𝑀)(.r‘𝑅)(𝐷‘((invr‘𝐴)‘𝑀))) = (1r‘𝑅)) |
37 | 20, 21, 25, 26 | unitlinv 19964 | . . . . . . 7 ⊢ ((𝐴 ∈ Ring ∧ 𝑀 ∈ 𝑈) → (((invr‘𝐴)‘𝑀)(.r‘𝐴)𝑀) = (1r‘𝐴)) |
38 | 19, 37 | sylancom 589 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (((invr‘𝐴)‘𝑀)(.r‘𝐴)𝑀) = (1r‘𝐴)) |
39 | 38 | fveq2d 6808 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘(((invr‘𝐴)‘𝑀)(.r‘𝐴)𝑀)) = (𝐷‘(1r‘𝐴))) |
40 | 9, 10, 8, 2, 25 | mdetmul 21817 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ ((invr‘𝐴)‘𝑀) ∈ 𝐵 ∧ 𝑀 ∈ 𝐵) → (𝐷‘(((invr‘𝐴)‘𝑀)(.r‘𝐴)𝑀)) = ((𝐷‘((invr‘𝐴)‘𝑀))(.r‘𝑅)(𝐷‘𝑀))) |
41 | 30, 23, 31, 40 | syl3anc 1371 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘(((invr‘𝐴)‘𝑀)(.r‘𝐴)𝑀)) = ((𝐷‘((invr‘𝐴)‘𝑀))(.r‘𝑅)(𝐷‘𝑀))) |
42 | 39, 41, 35 | 3eqtr3d 2784 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → ((𝐷‘((invr‘𝐴)‘𝑀))(.r‘𝑅)(𝐷‘𝑀)) = (1r‘𝑅)) |
43 | 1, 2, 3, 4, 5, 7, 12, 24, 36, 42 | invrvald 21870 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → ((𝐷‘𝑀) ∈ 𝑉 ∧ ((invr‘𝑅)‘(𝐷‘𝑀)) = (𝐷‘((invr‘𝐴)‘𝑀)))) |
44 | 43 | simpld 496 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘𝑀) ∈ 𝑉) |
45 | eqid 2736 | . . . . 5 ⊢ (𝑁 maAdju 𝑅) = (𝑁 maAdju 𝑅) | |
46 | eqid 2736 | . . . . 5 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
47 | 9, 45, 8, 10, 20, 4, 5, 21, 46 | matinv 21871 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝑀 ∈ 𝑈 ∧ ((invr‘𝐴)‘𝑀) = (((invr‘𝑅)‘(𝐷‘𝑀))( ·𝑠 ‘𝐴)((𝑁 maAdju 𝑅)‘𝑀)))) |
48 | 47 | simpld 496 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → 𝑀 ∈ 𝑈) |
49 | 48 | 3expa 1118 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐷‘𝑀) ∈ 𝑉) → 𝑀 ∈ 𝑈) |
50 | 44, 49 | impbida 799 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑈 ↔ (𝐷‘𝑀) ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 Fincfn 8764 Basecbs 16957 .rcmulr 17008 ·𝑠 cvsca 17011 1rcur 19782 Ringcrg 19828 CRingccrg 19829 Unitcui 19926 invrcinvr 19958 Mat cmat 21599 maDet cmdat 21778 maAdju cmadu 21826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-addf 10996 ax-mulf 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-xor 1508 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-ot 4574 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-tpos 8073 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-sup 9245 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-xnn0 12352 df-z 12366 df-dec 12484 df-uz 12629 df-rp 12777 df-fz 13286 df-fzo 13429 df-seq 13768 df-exp 13829 df-hash 14091 df-word 14263 df-lsw 14311 df-concat 14319 df-s1 14346 df-substr 14399 df-pfx 14429 df-splice 14508 df-reverse 14517 df-s2 14606 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-hom 17031 df-cco 17032 df-0g 17197 df-gsum 17198 df-prds 17203 df-pws 17205 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-mhm 18475 df-submnd 18476 df-efmnd 18553 df-grp 18625 df-minusg 18626 df-sbg 18627 df-mulg 18746 df-subg 18797 df-ghm 18877 df-gim 18920 df-cntz 18968 df-oppg 18995 df-symg 19020 df-pmtr 19095 df-psgn 19144 df-evpm 19145 df-cmn 19433 df-abl 19434 df-mgp 19766 df-ur 19783 df-srg 19787 df-ring 19830 df-cring 19831 df-oppr 19907 df-dvdsr 19928 df-unit 19929 df-invr 19959 df-dvr 19970 df-rnghom 20004 df-drng 20038 df-subrg 20067 df-lmod 20170 df-lss 20239 df-sra 20479 df-rgmod 20480 df-cnfld 20643 df-zring 20716 df-zrh 20750 df-dsmm 20984 df-frlm 20999 df-assa 21105 df-mamu 21578 df-mat 21600 df-mdet 21779 df-madu 21828 |
This theorem is referenced by: slesolinv 21874 slesolinvbi 21875 slesolex 21876 matunitlindf 35819 |
Copyright terms: Public domain | W3C validator |