Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . 4
β’
(Baseβπ
) =
(Baseβπ
) |
2 | | eqid 2732 |
. . . 4
β’
(.rβπ
) = (.rβπ
) |
3 | | eqid 2732 |
. . . 4
β’
(1rβπ
) = (1rβπ
) |
4 | | matunit.v |
. . . 4
β’ π = (Unitβπ
) |
5 | | eqid 2732 |
. . . 4
β’
(invrβπ
) = (invrβπ
) |
6 | | crngring 20061 |
. . . . 5
β’ (π
β CRing β π
β Ring) |
7 | 6 | ad2antrr 724 |
. . . 4
β’ (((π
β CRing β§ π β π΅) β§ π β π) β π
β Ring) |
8 | | matunit.d |
. . . . . 6
β’ π· = (π maDet π
) |
9 | | matunit.a |
. . . . . 6
β’ π΄ = (π Mat π
) |
10 | | matunit.b |
. . . . . 6
β’ π΅ = (Baseβπ΄) |
11 | 8, 9, 10, 1 | mdetcl 22089 |
. . . . 5
β’ ((π
β CRing β§ π β π΅) β (π·βπ) β (Baseβπ
)) |
12 | 11 | adantr 481 |
. . . 4
β’ (((π
β CRing β§ π β π΅) β§ π β π) β (π·βπ) β (Baseβπ
)) |
13 | 8, 9, 10, 1 | mdetf 22088 |
. . . . . 6
β’ (π
β CRing β π·:π΅βΆ(Baseβπ
)) |
14 | 13 | ad2antrr 724 |
. . . . 5
β’ (((π
β CRing β§ π β π΅) β§ π β π) β π·:π΅βΆ(Baseβπ
)) |
15 | 9, 10 | matrcl 21903 |
. . . . . . . . 9
β’ (π β π΅ β (π β Fin β§ π
β V)) |
16 | 15 | simpld 495 |
. . . . . . . 8
β’ (π β π΅ β π β Fin) |
17 | 16 | ad2antlr 725 |
. . . . . . 7
β’ (((π
β CRing β§ π β π΅) β§ π β π) β π β Fin) |
18 | 9 | matring 21936 |
. . . . . . 7
β’ ((π β Fin β§ π
β Ring) β π΄ β Ring) |
19 | 17, 7, 18 | syl2anc 584 |
. . . . . 6
β’ (((π
β CRing β§ π β π΅) β§ π β π) β π΄ β Ring) |
20 | | matunit.u |
. . . . . . 7
β’ π = (Unitβπ΄) |
21 | | eqid 2732 |
. . . . . . 7
β’
(invrβπ΄) = (invrβπ΄) |
22 | 20, 21, 10 | ringinvcl 20198 |
. . . . . 6
β’ ((π΄ β Ring β§ π β π) β ((invrβπ΄)βπ) β π΅) |
23 | 19, 22 | sylancom 588 |
. . . . 5
β’ (((π
β CRing β§ π β π΅) β§ π β π) β ((invrβπ΄)βπ) β π΅) |
24 | 14, 23 | ffvelcdmd 7084 |
. . . 4
β’ (((π
β CRing β§ π β π΅) β§ π β π) β (π·β((invrβπ΄)βπ)) β (Baseβπ
)) |
25 | | eqid 2732 |
. . . . . . . 8
β’
(.rβπ΄) = (.rβπ΄) |
26 | | eqid 2732 |
. . . . . . . 8
β’
(1rβπ΄) = (1rβπ΄) |
27 | 20, 21, 25, 26 | unitrinv 20200 |
. . . . . . 7
β’ ((π΄ β Ring β§ π β π) β (π(.rβπ΄)((invrβπ΄)βπ)) = (1rβπ΄)) |
28 | 19, 27 | sylancom 588 |
. . . . . 6
β’ (((π
β CRing β§ π β π΅) β§ π β π) β (π(.rβπ΄)((invrβπ΄)βπ)) = (1rβπ΄)) |
29 | 28 | fveq2d 6892 |
. . . . 5
β’ (((π
β CRing β§ π β π΅) β§ π β π) β (π·β(π(.rβπ΄)((invrβπ΄)βπ))) = (π·β(1rβπ΄))) |
30 | | simpll 765 |
. . . . . 6
β’ (((π
β CRing β§ π β π΅) β§ π β π) β π
β CRing) |
31 | | simplr 767 |
. . . . . 6
β’ (((π
β CRing β§ π β π΅) β§ π β π) β π β π΅) |
32 | 9, 10, 8, 2, 25 | mdetmul 22116 |
. . . . . 6
β’ ((π
β CRing β§ π β π΅ β§ ((invrβπ΄)βπ) β π΅) β (π·β(π(.rβπ΄)((invrβπ΄)βπ))) = ((π·βπ)(.rβπ
)(π·β((invrβπ΄)βπ)))) |
33 | 30, 31, 23, 32 | syl3anc 1371 |
. . . . 5
β’ (((π
β CRing β§ π β π΅) β§ π β π) β (π·β(π(.rβπ΄)((invrβπ΄)βπ))) = ((π·βπ)(.rβπ
)(π·β((invrβπ΄)βπ)))) |
34 | 8, 9, 26, 3 | mdet1 22094 |
. . . . . 6
β’ ((π
β CRing β§ π β Fin) β (π·β(1rβπ΄)) = (1rβπ
)) |
35 | 30, 17, 34 | syl2anc 584 |
. . . . 5
β’ (((π
β CRing β§ π β π΅) β§ π β π) β (π·β(1rβπ΄)) = (1rβπ
)) |
36 | 29, 33, 35 | 3eqtr3d 2780 |
. . . 4
β’ (((π
β CRing β§ π β π΅) β§ π β π) β ((π·βπ)(.rβπ
)(π·β((invrβπ΄)βπ))) = (1rβπ
)) |
37 | 20, 21, 25, 26 | unitlinv 20199 |
. . . . . . 7
β’ ((π΄ β Ring β§ π β π) β (((invrβπ΄)βπ)(.rβπ΄)π) = (1rβπ΄)) |
38 | 19, 37 | sylancom 588 |
. . . . . 6
β’ (((π
β CRing β§ π β π΅) β§ π β π) β (((invrβπ΄)βπ)(.rβπ΄)π) = (1rβπ΄)) |
39 | 38 | fveq2d 6892 |
. . . . 5
β’ (((π
β CRing β§ π β π΅) β§ π β π) β (π·β(((invrβπ΄)βπ)(.rβπ΄)π)) = (π·β(1rβπ΄))) |
40 | 9, 10, 8, 2, 25 | mdetmul 22116 |
. . . . . 6
β’ ((π
β CRing β§
((invrβπ΄)βπ) β π΅ β§ π β π΅) β (π·β(((invrβπ΄)βπ)(.rβπ΄)π)) = ((π·β((invrβπ΄)βπ))(.rβπ
)(π·βπ))) |
41 | 30, 23, 31, 40 | syl3anc 1371 |
. . . . 5
β’ (((π
β CRing β§ π β π΅) β§ π β π) β (π·β(((invrβπ΄)βπ)(.rβπ΄)π)) = ((π·β((invrβπ΄)βπ))(.rβπ
)(π·βπ))) |
42 | 39, 41, 35 | 3eqtr3d 2780 |
. . . 4
β’ (((π
β CRing β§ π β π΅) β§ π β π) β ((π·β((invrβπ΄)βπ))(.rβπ
)(π·βπ)) = (1rβπ
)) |
43 | 1, 2, 3, 4, 5, 7, 12, 24, 36, 42 | invrvald 22169 |
. . 3
β’ (((π
β CRing β§ π β π΅) β§ π β π) β ((π·βπ) β π β§ ((invrβπ
)β(π·βπ)) = (π·β((invrβπ΄)βπ)))) |
44 | 43 | simpld 495 |
. 2
β’ (((π
β CRing β§ π β π΅) β§ π β π) β (π·βπ) β π) |
45 | | eqid 2732 |
. . . . 5
β’ (π maAdju π
) = (π maAdju π
) |
46 | | eqid 2732 |
. . . . 5
β’ (
Β·π βπ΄) = ( Β·π
βπ΄) |
47 | 9, 45, 8, 10, 20, 4, 5, 21, 46 | matinv 22170 |
. . . 4
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β (π β π β§ ((invrβπ΄)βπ) = (((invrβπ
)β(π·βπ))( Β·π
βπ΄)((π maAdju π
)βπ)))) |
48 | 47 | simpld 495 |
. . 3
β’ ((π
β CRing β§ π β π΅ β§ (π·βπ) β π) β π β π) |
49 | 48 | 3expa 1118 |
. 2
β’ (((π
β CRing β§ π β π΅) β§ (π·βπ) β π) β π β π) |
50 | 44, 49 | impbida 799 |
1
β’ ((π
β CRing β§ π β π΅) β (π β π β (π·βπ) β π)) |