MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matunit Structured version   Visualization version   GIF version

Theorem matunit 21217
Description: A matrix is a unit in the ring of matrices iff its determinant is a unit in the underlying ring. (Contributed by Stefan O'Rear, 17-Jul-2018.)
Hypotheses
Ref Expression
matunit.a 𝐴 = (𝑁 Mat 𝑅)
matunit.d 𝐷 = (𝑁 maDet 𝑅)
matunit.b 𝐵 = (Base‘𝐴)
matunit.u 𝑈 = (Unit‘𝐴)
matunit.v 𝑉 = (Unit‘𝑅)
Assertion
Ref Expression
matunit ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑀𝑈 ↔ (𝐷𝑀) ∈ 𝑉))

Proof of Theorem matunit
StepHypRef Expression
1 eqid 2821 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2821 . . . 4 (.r𝑅) = (.r𝑅)
3 eqid 2821 . . . 4 (1r𝑅) = (1r𝑅)
4 matunit.v . . . 4 𝑉 = (Unit‘𝑅)
5 eqid 2821 . . . 4 (invr𝑅) = (invr𝑅)
6 crngring 19239 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
76ad2antrr 722 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → 𝑅 ∈ Ring)
8 matunit.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
9 matunit.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
10 matunit.b . . . . . 6 𝐵 = (Base‘𝐴)
118, 9, 10, 1mdetcl 21135 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐷𝑀) ∈ (Base‘𝑅))
1211adantr 481 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → (𝐷𝑀) ∈ (Base‘𝑅))
138, 9, 10, 1mdetf 21134 . . . . . 6 (𝑅 ∈ CRing → 𝐷:𝐵⟶(Base‘𝑅))
1413ad2antrr 722 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → 𝐷:𝐵⟶(Base‘𝑅))
159, 10matrcl 20951 . . . . . . . . 9 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1615simpld 495 . . . . . . . 8 (𝑀𝐵𝑁 ∈ Fin)
1716ad2antlr 723 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → 𝑁 ∈ Fin)
189matring 20982 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
1917, 7, 18syl2anc 584 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → 𝐴 ∈ Ring)
20 matunit.u . . . . . . 7 𝑈 = (Unit‘𝐴)
21 eqid 2821 . . . . . . 7 (invr𝐴) = (invr𝐴)
2220, 21, 10ringinvcl 19357 . . . . . 6 ((𝐴 ∈ Ring ∧ 𝑀𝑈) → ((invr𝐴)‘𝑀) ∈ 𝐵)
2319, 22sylancom 588 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → ((invr𝐴)‘𝑀) ∈ 𝐵)
2414, 23ffvelrnd 6845 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → (𝐷‘((invr𝐴)‘𝑀)) ∈ (Base‘𝑅))
25 eqid 2821 . . . . . . . 8 (.r𝐴) = (.r𝐴)
26 eqid 2821 . . . . . . . 8 (1r𝐴) = (1r𝐴)
2720, 21, 25, 26unitrinv 19359 . . . . . . 7 ((𝐴 ∈ Ring ∧ 𝑀𝑈) → (𝑀(.r𝐴)((invr𝐴)‘𝑀)) = (1r𝐴))
2819, 27sylancom 588 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → (𝑀(.r𝐴)((invr𝐴)‘𝑀)) = (1r𝐴))
2928fveq2d 6668 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → (𝐷‘(𝑀(.r𝐴)((invr𝐴)‘𝑀))) = (𝐷‘(1r𝐴)))
30 simpll 763 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → 𝑅 ∈ CRing)
31 simplr 765 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → 𝑀𝐵)
329, 10, 8, 2, 25mdetmul 21162 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ ((invr𝐴)‘𝑀) ∈ 𝐵) → (𝐷‘(𝑀(.r𝐴)((invr𝐴)‘𝑀))) = ((𝐷𝑀)(.r𝑅)(𝐷‘((invr𝐴)‘𝑀))))
3330, 31, 23, 32syl3anc 1363 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → (𝐷‘(𝑀(.r𝐴)((invr𝐴)‘𝑀))) = ((𝐷𝑀)(.r𝑅)(𝐷‘((invr𝐴)‘𝑀))))
348, 9, 26, 3mdet1 21140 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘(1r𝐴)) = (1r𝑅))
3530, 17, 34syl2anc 584 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → (𝐷‘(1r𝐴)) = (1r𝑅))
3629, 33, 353eqtr3d 2864 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → ((𝐷𝑀)(.r𝑅)(𝐷‘((invr𝐴)‘𝑀))) = (1r𝑅))
3720, 21, 25, 26unitlinv 19358 . . . . . . 7 ((𝐴 ∈ Ring ∧ 𝑀𝑈) → (((invr𝐴)‘𝑀)(.r𝐴)𝑀) = (1r𝐴))
3819, 37sylancom 588 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → (((invr𝐴)‘𝑀)(.r𝐴)𝑀) = (1r𝐴))
3938fveq2d 6668 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → (𝐷‘(((invr𝐴)‘𝑀)(.r𝐴)𝑀)) = (𝐷‘(1r𝐴)))
409, 10, 8, 2, 25mdetmul 21162 . . . . . 6 ((𝑅 ∈ CRing ∧ ((invr𝐴)‘𝑀) ∈ 𝐵𝑀𝐵) → (𝐷‘(((invr𝐴)‘𝑀)(.r𝐴)𝑀)) = ((𝐷‘((invr𝐴)‘𝑀))(.r𝑅)(𝐷𝑀)))
4130, 23, 31, 40syl3anc 1363 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → (𝐷‘(((invr𝐴)‘𝑀)(.r𝐴)𝑀)) = ((𝐷‘((invr𝐴)‘𝑀))(.r𝑅)(𝐷𝑀)))
4239, 41, 353eqtr3d 2864 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → ((𝐷‘((invr𝐴)‘𝑀))(.r𝑅)(𝐷𝑀)) = (1r𝑅))
431, 2, 3, 4, 5, 7, 12, 24, 36, 42invrvald 21215 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → ((𝐷𝑀) ∈ 𝑉 ∧ ((invr𝑅)‘(𝐷𝑀)) = (𝐷‘((invr𝐴)‘𝑀))))
4443simpld 495 . 2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑀𝑈) → (𝐷𝑀) ∈ 𝑉)
45 eqid 2821 . . . . 5 (𝑁 maAdju 𝑅) = (𝑁 maAdju 𝑅)
46 eqid 2821 . . . . 5 ( ·𝑠𝐴) = ( ·𝑠𝐴)
479, 45, 8, 10, 20, 4, 5, 21, 46matinv 21216 . . . 4 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (𝑀𝑈 ∧ ((invr𝐴)‘𝑀) = (((invr𝑅)‘(𝐷𝑀))( ·𝑠𝐴)((𝑁 maAdju 𝑅)‘𝑀))))
4847simpld 495 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → 𝑀𝑈)
49483expa 1110 . 2 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐷𝑀) ∈ 𝑉) → 𝑀𝑈)
5044, 49impbida 797 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑀𝑈 ↔ (𝐷𝑀) ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  Vcvv 3495  wf 6345  cfv 6349  (class class class)co 7145  Fincfn 8498  Basecbs 16473  .rcmulr 16556   ·𝑠 cvsca 16559  1rcur 19182  Ringcrg 19228  CRingccrg 19229  Unitcui 19320  invrcinvr 19352   Mat cmat 20946   maDet cmdat 21123   maAdju cmadu 21171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-xor 1496  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-ot 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-tpos 7883  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-sup 8895  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-xnn0 11957  df-z 11971  df-dec 12088  df-uz 12233  df-rp 12380  df-fz 12883  df-fzo 13024  df-seq 13360  df-exp 13420  df-hash 13681  df-word 13852  df-lsw 13905  df-concat 13913  df-s1 13940  df-substr 13993  df-pfx 14023  df-splice 14102  df-reverse 14111  df-s2 14200  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-0g 16705  df-gsum 16706  df-prds 16711  df-pws 16713  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-mhm 17946  df-submnd 17947  df-grp 18046  df-minusg 18047  df-sbg 18048  df-mulg 18165  df-subg 18216  df-ghm 18296  df-gim 18339  df-cntz 18387  df-oppg 18414  df-symg 18436  df-pmtr 18501  df-psgn 18550  df-evpm 18551  df-cmn 18839  df-abl 18840  df-mgp 19171  df-ur 19183  df-srg 19187  df-ring 19230  df-cring 19231  df-oppr 19304  df-dvdsr 19322  df-unit 19323  df-invr 19353  df-dvr 19364  df-rnghom 19398  df-drng 19435  df-subrg 19464  df-lmod 19567  df-lss 19635  df-sra 19875  df-rgmod 19876  df-assa 20015  df-cnfld 20476  df-zring 20548  df-zrh 20581  df-dsmm 20806  df-frlm 20821  df-mamu 20925  df-mat 20947  df-mdet 21124  df-madu 21173
This theorem is referenced by:  slesolinv  21219  slesolinvbi  21220  slesolex  21221  matunitlindf  34772
  Copyright terms: Public domain W3C validator