| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matunit | Structured version Visualization version GIF version | ||
| Description: A matrix is a unit in the ring of matrices iff its determinant is a unit in the underlying ring. (Contributed by Stefan O'Rear, 17-Jul-2018.) |
| Ref | Expression |
|---|---|
| matunit.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| matunit.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| matunit.b | ⊢ 𝐵 = (Base‘𝐴) |
| matunit.u | ⊢ 𝑈 = (Unit‘𝐴) |
| matunit.v | ⊢ 𝑉 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| matunit | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑈 ↔ (𝐷‘𝑀) ∈ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2731 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | eqid 2731 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 4 | matunit.v | . . . 4 ⊢ 𝑉 = (Unit‘𝑅) | |
| 5 | eqid 2731 | . . . 4 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 6 | crngring 20164 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 7 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → 𝑅 ∈ Ring) |
| 8 | matunit.d | . . . . . 6 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 9 | matunit.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 10 | matunit.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 11 | 8, 9, 10, 1 | mdetcl 22512 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐷‘𝑀) ∈ (Base‘𝑅)) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘𝑀) ∈ (Base‘𝑅)) |
| 13 | 8, 9, 10, 1 | mdetf 22511 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝐷:𝐵⟶(Base‘𝑅)) |
| 14 | 13 | ad2antrr 726 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → 𝐷:𝐵⟶(Base‘𝑅)) |
| 15 | 9, 10 | matrcl 22328 | . . . . . . . . 9 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 16 | 15 | simpld 494 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 17 | 16 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → 𝑁 ∈ Fin) |
| 18 | 9 | matring 22359 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 19 | 17, 7, 18 | syl2anc 584 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → 𝐴 ∈ Ring) |
| 20 | matunit.u | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝐴) | |
| 21 | eqid 2731 | . . . . . . 7 ⊢ (invr‘𝐴) = (invr‘𝐴) | |
| 22 | 20, 21, 10 | ringinvcl 20311 | . . . . . 6 ⊢ ((𝐴 ∈ Ring ∧ 𝑀 ∈ 𝑈) → ((invr‘𝐴)‘𝑀) ∈ 𝐵) |
| 23 | 19, 22 | sylancom 588 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → ((invr‘𝐴)‘𝑀) ∈ 𝐵) |
| 24 | 14, 23 | ffvelcdmd 7018 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘((invr‘𝐴)‘𝑀)) ∈ (Base‘𝑅)) |
| 25 | eqid 2731 | . . . . . . . 8 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
| 26 | eqid 2731 | . . . . . . . 8 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 27 | 20, 21, 25, 26 | unitrinv 20313 | . . . . . . 7 ⊢ ((𝐴 ∈ Ring ∧ 𝑀 ∈ 𝑈) → (𝑀(.r‘𝐴)((invr‘𝐴)‘𝑀)) = (1r‘𝐴)) |
| 28 | 19, 27 | sylancom 588 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝑀(.r‘𝐴)((invr‘𝐴)‘𝑀)) = (1r‘𝐴)) |
| 29 | 28 | fveq2d 6826 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘(𝑀(.r‘𝐴)((invr‘𝐴)‘𝑀))) = (𝐷‘(1r‘𝐴))) |
| 30 | simpll 766 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → 𝑅 ∈ CRing) | |
| 31 | simplr 768 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → 𝑀 ∈ 𝐵) | |
| 32 | 9, 10, 8, 2, 25 | mdetmul 22539 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ((invr‘𝐴)‘𝑀) ∈ 𝐵) → (𝐷‘(𝑀(.r‘𝐴)((invr‘𝐴)‘𝑀))) = ((𝐷‘𝑀)(.r‘𝑅)(𝐷‘((invr‘𝐴)‘𝑀)))) |
| 33 | 30, 31, 23, 32 | syl3anc 1373 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘(𝑀(.r‘𝐴)((invr‘𝐴)‘𝑀))) = ((𝐷‘𝑀)(.r‘𝑅)(𝐷‘((invr‘𝐴)‘𝑀)))) |
| 34 | 8, 9, 26, 3 | mdet1 22517 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘(1r‘𝐴)) = (1r‘𝑅)) |
| 35 | 30, 17, 34 | syl2anc 584 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘(1r‘𝐴)) = (1r‘𝑅)) |
| 36 | 29, 33, 35 | 3eqtr3d 2774 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → ((𝐷‘𝑀)(.r‘𝑅)(𝐷‘((invr‘𝐴)‘𝑀))) = (1r‘𝑅)) |
| 37 | 20, 21, 25, 26 | unitlinv 20312 | . . . . . . 7 ⊢ ((𝐴 ∈ Ring ∧ 𝑀 ∈ 𝑈) → (((invr‘𝐴)‘𝑀)(.r‘𝐴)𝑀) = (1r‘𝐴)) |
| 38 | 19, 37 | sylancom 588 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (((invr‘𝐴)‘𝑀)(.r‘𝐴)𝑀) = (1r‘𝐴)) |
| 39 | 38 | fveq2d 6826 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘(((invr‘𝐴)‘𝑀)(.r‘𝐴)𝑀)) = (𝐷‘(1r‘𝐴))) |
| 40 | 9, 10, 8, 2, 25 | mdetmul 22539 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ ((invr‘𝐴)‘𝑀) ∈ 𝐵 ∧ 𝑀 ∈ 𝐵) → (𝐷‘(((invr‘𝐴)‘𝑀)(.r‘𝐴)𝑀)) = ((𝐷‘((invr‘𝐴)‘𝑀))(.r‘𝑅)(𝐷‘𝑀))) |
| 41 | 30, 23, 31, 40 | syl3anc 1373 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘(((invr‘𝐴)‘𝑀)(.r‘𝐴)𝑀)) = ((𝐷‘((invr‘𝐴)‘𝑀))(.r‘𝑅)(𝐷‘𝑀))) |
| 42 | 39, 41, 35 | 3eqtr3d 2774 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → ((𝐷‘((invr‘𝐴)‘𝑀))(.r‘𝑅)(𝐷‘𝑀)) = (1r‘𝑅)) |
| 43 | 1, 2, 3, 4, 5, 7, 12, 24, 36, 42 | invrvald 22592 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → ((𝐷‘𝑀) ∈ 𝑉 ∧ ((invr‘𝑅)‘(𝐷‘𝑀)) = (𝐷‘((invr‘𝐴)‘𝑀)))) |
| 44 | 43 | simpld 494 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑀 ∈ 𝑈) → (𝐷‘𝑀) ∈ 𝑉) |
| 45 | eqid 2731 | . . . . 5 ⊢ (𝑁 maAdju 𝑅) = (𝑁 maAdju 𝑅) | |
| 46 | eqid 2731 | . . . . 5 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
| 47 | 9, 45, 8, 10, 20, 4, 5, 21, 46 | matinv 22593 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → (𝑀 ∈ 𝑈 ∧ ((invr‘𝐴)‘𝑀) = (((invr‘𝑅)‘(𝐷‘𝑀))( ·𝑠 ‘𝐴)((𝑁 maAdju 𝑅)‘𝑀)))) |
| 48 | 47 | simpld 494 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ (𝐷‘𝑀) ∈ 𝑉) → 𝑀 ∈ 𝑈) |
| 49 | 48 | 3expa 1118 | . 2 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐷‘𝑀) ∈ 𝑉) → 𝑀 ∈ 𝑈) |
| 50 | 44, 49 | impbida 800 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑈 ↔ (𝐷‘𝑀) ∈ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 Basecbs 17120 .rcmulr 17162 ·𝑠 cvsca 17165 1rcur 20100 Ringcrg 20152 CRingccrg 20153 Unitcui 20274 invrcinvr 20306 Mat cmat 22323 maDet cmdat 22500 maAdju cmadu 22548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-reverse 14666 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-efmnd 18777 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19126 df-gim 19172 df-cntz 19230 df-oppg 19259 df-symg 19283 df-pmtr 19355 df-psgn 19404 df-evpm 19405 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-srg 20106 df-ring 20154 df-cring 20155 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 df-dvr 20320 df-rhm 20391 df-subrng 20462 df-subrg 20486 df-drng 20647 df-lmod 20796 df-lss 20866 df-sra 21108 df-rgmod 21109 df-cnfld 21293 df-zring 21385 df-zrh 21441 df-dsmm 21670 df-frlm 21685 df-assa 21791 df-mamu 22307 df-mat 22324 df-mdet 22501 df-madu 22550 |
| This theorem is referenced by: slesolinv 22596 slesolinvbi 22597 slesolex 22598 matunitlindf 37664 |
| Copyright terms: Public domain | W3C validator |