Proof of Theorem slesolinv
| Step | Hyp | Ref
| Expression |
| 1 | | slesolex.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 2 | | eqid 2737 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | | slesolex.x |
. . 3
⊢ · =
(𝑅 maVecMul 〈𝑁, 𝑁〉) |
| 4 | | crngring 20242 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 5 | 4 | adantl 481 |
. . . 4
⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
| 6 | 5 | 3ad2ant1 1134 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑅 ∈ Ring) |
| 7 | | slesolex.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐴) |
| 8 | 1, 7 | matrcl 22416 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 9 | 8 | simpld 494 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 10 | 9 | adantr 480 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑁 ∈ Fin) |
| 11 | 10 | 3ad2ant2 1135 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑁 ∈ Fin) |
| 12 | 4 | anim2i 617 |
. . . . . . 7
⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → (𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring)) |
| 13 | 12 | anim1i 615 |
. . . . . 6
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉))) |
| 14 | 13 | 3adant3 1133 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉))) |
| 15 | | simpr 484 |
. . . . . 6
⊢ (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 · 𝑍) = 𝑌) |
| 16 | 15 | 3ad2ant3 1136 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑋 · 𝑍) = 𝑌) |
| 17 | | slesolex.v |
. . . . . 6
⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| 18 | 1, 7, 17, 3 | slesolvec 22685 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) |
| 19 | 14, 16, 18 | sylc 65 |
. . . 4
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 ∈ 𝑉) |
| 20 | 19, 17 | eleqtrdi 2851 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 ∈ ((Base‘𝑅) ↑m 𝑁)) |
| 21 | | eqid 2737 |
. . 3
⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
| 22 | 5, 10 | anim12ci 614 |
. . . . . 6
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 23 | 22 | 3adant3 1133 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 24 | 1 | matring 22449 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 25 | 23, 24 | syl 17 |
. . . 4
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝐴 ∈ Ring) |
| 26 | | slesolex.d |
. . . . . . . . . 10
⊢ 𝐷 = (𝑁 maDet 𝑅) |
| 27 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Unit‘𝐴) =
(Unit‘𝐴) |
| 28 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
| 29 | 1, 26, 7, 27, 28 | matunit 22684 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ (Unit‘𝐴) ↔ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
| 30 | 29 | bicomd 223 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) ↔ 𝑋 ∈ (Unit‘𝐴))) |
| 31 | 30 | ad2ant2lr 748 |
. . . . . . 7
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) ↔ 𝑋 ∈ (Unit‘𝐴))) |
| 32 | 31 | biimpd 229 |
. . . . . 6
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) → 𝑋 ∈ (Unit‘𝐴))) |
| 33 | 32 | adantrd 491 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋 ∈ (Unit‘𝐴))) |
| 34 | 33 | 3impia 1118 |
. . . 4
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑋 ∈ (Unit‘𝐴)) |
| 35 | | slesolinv.i |
. . . . 5
⊢ 𝐼 = (invr‘𝐴) |
| 36 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 37 | 27, 35, 36 | ringinvcl 20392 |
. . . 4
⊢ ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → (𝐼‘𝑋) ∈ (Base‘𝐴)) |
| 38 | 25, 34, 37 | syl2anc 584 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝐼‘𝑋) ∈ (Base‘𝐴)) |
| 39 | 7 | eleq2i 2833 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘𝐴)) |
| 40 | 39 | biimpi 216 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝐴)) |
| 41 | 40 | adantr 480 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ (Base‘𝐴)) |
| 42 | 41 | 3ad2ant2 1135 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑋 ∈ (Base‘𝐴)) |
| 43 | 1, 2, 3, 6, 11, 20, 21, 38, 42 | mavmulass 22555 |
. 2
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (((𝐼‘𝑋)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑋) · 𝑍) = ((𝐼‘𝑋) · (𝑋 · 𝑍))) |
| 44 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing) |
| 45 | 44, 10 | anim12ci 614 |
. . . . . . . 8
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) |
| 46 | 45 | 3adant3 1133 |
. . . . . . 7
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) |
| 47 | 1, 21 | matmulr 22444 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
| 48 | 46, 47 | syl 17 |
. . . . . 6
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
| 49 | 48 | oveqd 7448 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝐼‘𝑋)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑋) = ((𝐼‘𝑋)(.r‘𝐴)𝑋)) |
| 50 | | eqid 2737 |
. . . . . . 7
⊢
(.r‘𝐴) = (.r‘𝐴) |
| 51 | | eqid 2737 |
. . . . . . 7
⊢
(1r‘𝐴) = (1r‘𝐴) |
| 52 | 27, 35, 50, 51 | unitlinv 20393 |
. . . . . 6
⊢ ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → ((𝐼‘𝑋)(.r‘𝐴)𝑋) = (1r‘𝐴)) |
| 53 | 25, 34, 52 | syl2anc 584 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝐼‘𝑋)(.r‘𝐴)𝑋) = (1r‘𝐴)) |
| 54 | 49, 53 | eqtrd 2777 |
. . . 4
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝐼‘𝑋)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑋) = (1r‘𝐴)) |
| 55 | 54 | oveq1d 7446 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (((𝐼‘𝑋)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑋) · 𝑍) = ((1r‘𝐴) · 𝑍)) |
| 56 | 1, 2, 3, 6, 11, 20 | 1mavmul 22554 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((1r‘𝐴) · 𝑍) = 𝑍) |
| 57 | 55, 56 | eqtrd 2777 |
. 2
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (((𝐼‘𝑋)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑋) · 𝑍) = 𝑍) |
| 58 | | oveq2 7439 |
. . . 4
⊢ ((𝑋 · 𝑍) = 𝑌 → ((𝐼‘𝑋) · (𝑋 · 𝑍)) = ((𝐼‘𝑋) · 𝑌)) |
| 59 | 58 | adantl 481 |
. . 3
⊢ (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐼‘𝑋) · (𝑋 · 𝑍)) = ((𝐼‘𝑋) · 𝑌)) |
| 60 | 59 | 3ad2ant3 1136 |
. 2
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝐼‘𝑋) · (𝑋 · 𝑍)) = ((𝐼‘𝑋) · 𝑌)) |
| 61 | 43, 57, 60 | 3eqtr3d 2785 |
1
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = ((𝐼‘𝑋) · 𝑌)) |