Proof of Theorem slesolinv
Step | Hyp | Ref
| Expression |
1 | | slesolex.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | eqid 2738 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | | slesolex.x |
. . 3
⊢ · =
(𝑅 maVecMul 〈𝑁, 𝑁〉) |
4 | | crngring 19710 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
5 | 4 | adantl 481 |
. . . 4
⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
6 | 5 | 3ad2ant1 1131 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑅 ∈ Ring) |
7 | | slesolex.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐴) |
8 | 1, 7 | matrcl 21469 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
9 | 8 | simpld 494 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
10 | 9 | adantr 480 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑁 ∈ Fin) |
11 | 10 | 3ad2ant2 1132 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑁 ∈ Fin) |
12 | 4 | anim2i 616 |
. . . . . . 7
⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → (𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring)) |
13 | 12 | anim1i 614 |
. . . . . 6
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉))) |
14 | 13 | 3adant3 1130 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉))) |
15 | | simpr 484 |
. . . . . 6
⊢ (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 · 𝑍) = 𝑌) |
16 | 15 | 3ad2ant3 1133 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑋 · 𝑍) = 𝑌) |
17 | | slesolex.v |
. . . . . 6
⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
18 | 1, 7, 17, 3 | slesolvec 21736 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) |
19 | 14, 16, 18 | sylc 65 |
. . . 4
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 ∈ 𝑉) |
20 | 19, 17 | eleqtrdi 2849 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 ∈ ((Base‘𝑅) ↑m 𝑁)) |
21 | | eqid 2738 |
. . 3
⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
22 | 5, 10 | anim12ci 613 |
. . . . . 6
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
23 | 22 | 3adant3 1130 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
24 | 1 | matring 21500 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
25 | 23, 24 | syl 17 |
. . . 4
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝐴 ∈ Ring) |
26 | | slesolex.d |
. . . . . . . . . 10
⊢ 𝐷 = (𝑁 maDet 𝑅) |
27 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Unit‘𝐴) =
(Unit‘𝐴) |
28 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
29 | 1, 26, 7, 27, 28 | matunit 21735 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ (Unit‘𝐴) ↔ (𝐷‘𝑋) ∈ (Unit‘𝑅))) |
30 | 29 | bicomd 222 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) ↔ 𝑋 ∈ (Unit‘𝐴))) |
31 | 30 | ad2ant2lr 744 |
. . . . . . 7
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) ↔ 𝑋 ∈ (Unit‘𝐴))) |
32 | 31 | biimpd 228 |
. . . . . 6
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝐷‘𝑋) ∈ (Unit‘𝑅) → 𝑋 ∈ (Unit‘𝐴))) |
33 | 32 | adantrd 491 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋 ∈ (Unit‘𝐴))) |
34 | 33 | 3impia 1115 |
. . . 4
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑋 ∈ (Unit‘𝐴)) |
35 | | slesolinv.i |
. . . . 5
⊢ 𝐼 = (invr‘𝐴) |
36 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐴) =
(Base‘𝐴) |
37 | 27, 35, 36 | ringinvcl 19833 |
. . . 4
⊢ ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → (𝐼‘𝑋) ∈ (Base‘𝐴)) |
38 | 25, 34, 37 | syl2anc 583 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝐼‘𝑋) ∈ (Base‘𝐴)) |
39 | 7 | eleq2i 2830 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘𝐴)) |
40 | 39 | biimpi 215 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝐴)) |
41 | 40 | adantr 480 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ (Base‘𝐴)) |
42 | 41 | 3ad2ant2 1132 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑋 ∈ (Base‘𝐴)) |
43 | 1, 2, 3, 6, 11, 20, 21, 38, 42 | mavmulass 21606 |
. 2
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (((𝐼‘𝑋)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑋) · 𝑍) = ((𝐼‘𝑋) · (𝑋 · 𝑍))) |
44 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing) |
45 | 44, 10 | anim12ci 613 |
. . . . . . . 8
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) |
46 | 45 | 3adant3 1130 |
. . . . . . 7
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing)) |
47 | 1, 21 | matmulr 21495 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
48 | 46, 47 | syl 17 |
. . . . . 6
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
49 | 48 | oveqd 7272 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝐼‘𝑋)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑋) = ((𝐼‘𝑋)(.r‘𝐴)𝑋)) |
50 | | eqid 2738 |
. . . . . . 7
⊢
(.r‘𝐴) = (.r‘𝐴) |
51 | | eqid 2738 |
. . . . . . 7
⊢
(1r‘𝐴) = (1r‘𝐴) |
52 | 27, 35, 50, 51 | unitlinv 19834 |
. . . . . 6
⊢ ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → ((𝐼‘𝑋)(.r‘𝐴)𝑋) = (1r‘𝐴)) |
53 | 25, 34, 52 | syl2anc 583 |
. . . . 5
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝐼‘𝑋)(.r‘𝐴)𝑋) = (1r‘𝐴)) |
54 | 49, 53 | eqtrd 2778 |
. . . 4
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝐼‘𝑋)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑋) = (1r‘𝐴)) |
55 | 54 | oveq1d 7270 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (((𝐼‘𝑋)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑋) · 𝑍) = ((1r‘𝐴) · 𝑍)) |
56 | 1, 2, 3, 6, 11, 20 | 1mavmul 21605 |
. . 3
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((1r‘𝐴) · 𝑍) = 𝑍) |
57 | 55, 56 | eqtrd 2778 |
. 2
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (((𝐼‘𝑋)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑋) · 𝑍) = 𝑍) |
58 | | oveq2 7263 |
. . . 4
⊢ ((𝑋 · 𝑍) = 𝑌 → ((𝐼‘𝑋) · (𝑋 · 𝑍)) = ((𝐼‘𝑋) · 𝑌)) |
59 | 58 | adantl 481 |
. . 3
⊢ (((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐼‘𝑋) · (𝑋 · 𝑍)) = ((𝐼‘𝑋) · 𝑌)) |
60 | 59 | 3ad2ant3 1133 |
. 2
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝐼‘𝑋) · (𝑋 · 𝑍)) = ((𝐼‘𝑋) · 𝑌)) |
61 | 43, 57, 60 | 3eqtr3d 2786 |
1
⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) ∧ ((𝐷‘𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = ((𝐼‘𝑋) · 𝑌)) |