MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slesolinv Structured version   Visualization version   GIF version

Theorem slesolinv 21005
Description: The solution of a system of linear equations represented by a matrix with a unit as determinant is the multiplication of the inverse of the matrix with the right-hand side vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 28-Feb-2019.)
Hypotheses
Ref Expression
slesolex.a 𝐴 = (𝑁 Mat 𝑅)
slesolex.b 𝐵 = (Base‘𝐴)
slesolex.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
slesolex.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
slesolex.d 𝐷 = (𝑁 maDet 𝑅)
slesolinv.i 𝐼 = (invr𝐴)
Assertion
Ref Expression
slesolinv (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = ((𝐼𝑋) · 𝑌))

Proof of Theorem slesolinv
StepHypRef Expression
1 slesolex.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2772 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 slesolex.x . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
4 crngring 19043 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
54adantl 474 . . . 4 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
653ad2ant1 1113 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑅 ∈ Ring)
7 slesolex.b . . . . . . 7 𝐵 = (Base‘𝐴)
81, 7matrcl 20737 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 487 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
109adantr 473 . . . 4 ((𝑋𝐵𝑌𝑉) → 𝑁 ∈ Fin)
11103ad2ant2 1114 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑁 ∈ Fin)
124anim2i 607 . . . . . . 7 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → (𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring))
1312anim1i 605 . . . . . 6 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)))
14133adant3 1112 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)))
15 simpr 477 . . . . . 6 (((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 · 𝑍) = 𝑌)
16153ad2ant3 1115 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑋 · 𝑍) = 𝑌)
17 slesolex.v . . . . . 6 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
181, 7, 17, 3slesolvec 21004 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
1914, 16, 18sylc 65 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍𝑉)
2019, 17syl6eleq 2870 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 ∈ ((Base‘𝑅) ↑𝑚 𝑁))
21 eqid 2772 . . 3 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
225, 10anim12ci 604 . . . . . 6 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
23223adant3 1112 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
241matring 20768 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
2523, 24syl 17 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝐴 ∈ Ring)
26 slesolex.d . . . . . . . . . 10 𝐷 = (𝑁 maDet 𝑅)
27 eqid 2772 . . . . . . . . . 10 (Unit‘𝐴) = (Unit‘𝐴)
28 eqid 2772 . . . . . . . . . 10 (Unit‘𝑅) = (Unit‘𝑅)
291, 26, 7, 27, 28matunit 21003 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋 ∈ (Unit‘𝐴) ↔ (𝐷𝑋) ∈ (Unit‘𝑅)))
3029bicomd 215 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((𝐷𝑋) ∈ (Unit‘𝑅) ↔ 𝑋 ∈ (Unit‘𝐴)))
3130ad2ant2lr 735 . . . . . . 7 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → ((𝐷𝑋) ∈ (Unit‘𝑅) ↔ 𝑋 ∈ (Unit‘𝐴)))
3231biimpd 221 . . . . . 6 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → ((𝐷𝑋) ∈ (Unit‘𝑅) → 𝑋 ∈ (Unit‘𝐴)))
3332adantrd 484 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → (((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋 ∈ (Unit‘𝐴)))
34333impia 1097 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑋 ∈ (Unit‘𝐴))
35 slesolinv.i . . . . 5 𝐼 = (invr𝐴)
36 eqid 2772 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
3727, 35, 36ringinvcl 19161 . . . 4 ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → (𝐼𝑋) ∈ (Base‘𝐴))
3825, 34, 37syl2anc 576 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝐼𝑋) ∈ (Base‘𝐴))
397eleq2i 2851 . . . . . 6 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
4039biimpi 208 . . . . 5 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
4140adantr 473 . . . 4 ((𝑋𝐵𝑌𝑉) → 𝑋 ∈ (Base‘𝐴))
42413ad2ant2 1114 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑋 ∈ (Base‘𝐴))
431, 2, 3, 6, 11, 20, 21, 38, 42mavmulass 20874 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (((𝐼𝑋)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑋) · 𝑍) = ((𝐼𝑋) · (𝑋 · 𝑍)))
44 simpr 477 . . . . . . . . 9 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing)
4544, 10anim12ci 604 . . . . . . . 8 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
46453adant3 1112 . . . . . . 7 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
471, 21matmulr 20763 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
4846, 47syl 17 . . . . . 6 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
4948oveqd 6991 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝐼𝑋)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑋) = ((𝐼𝑋)(.r𝐴)𝑋))
50 eqid 2772 . . . . . . 7 (.r𝐴) = (.r𝐴)
51 eqid 2772 . . . . . . 7 (1r𝐴) = (1r𝐴)
5227, 35, 50, 51unitlinv 19162 . . . . . 6 ((𝐴 ∈ Ring ∧ 𝑋 ∈ (Unit‘𝐴)) → ((𝐼𝑋)(.r𝐴)𝑋) = (1r𝐴))
5325, 34, 52syl2anc 576 . . . . 5 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝐼𝑋)(.r𝐴)𝑋) = (1r𝐴))
5449, 53eqtrd 2808 . . . 4 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝐼𝑋)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑋) = (1r𝐴))
5554oveq1d 6989 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (((𝐼𝑋)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑋) · 𝑍) = ((1r𝐴) · 𝑍))
561, 2, 3, 6, 11, 201mavmul 20873 . . 3 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((1r𝐴) · 𝑍) = 𝑍)
5755, 56eqtrd 2808 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → (((𝐼𝑋)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑋) · 𝑍) = 𝑍)
58 oveq2 6982 . . . 4 ((𝑋 · 𝑍) = 𝑌 → ((𝐼𝑋) · (𝑋 · 𝑍)) = ((𝐼𝑋) · 𝑌))
5958adantl 474 . . 3 (((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐼𝑋) · (𝑋 · 𝑍)) = ((𝐼𝑋) · 𝑌))
60593ad2ant3 1115 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → ((𝐼𝑋) · (𝑋 · 𝑍)) = ((𝐼𝑋) · 𝑌))
6143, 57, 603eqtr3d 2816 1 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = ((𝐼𝑋) · 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2961  Vcvv 3409  c0 4172  cop 4441  cotp 4443  cfv 6185  (class class class)co 6974  𝑚 cmap 8204  Fincfn 8304  Basecbs 16337  .rcmulr 16420  1rcur 18986  Ringcrg 19032  CRingccrg 19033  Unitcui 19124  invrcinvr 19156   maMul cmmul 20708   Mat cmat 20732   maVecMul cmvmul 20865   maDet cmdat 20909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-addf 10412  ax-mulf 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-xor 1489  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-ot 4444  df-uni 4709  df-int 4746  df-iun 4790  df-iin 4791  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-of 7225  df-om 7395  df-1st 7499  df-2nd 7500  df-supp 7632  df-tpos 7693  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-2o 7904  df-oadd 7907  df-er 8087  df-map 8206  df-pm 8207  df-ixp 8258  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-fsupp 8627  df-sup 8699  df-oi 8767  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-7 11506  df-8 11507  df-9 11508  df-n0 11706  df-xnn0 11778  df-z 11792  df-dec 11910  df-uz 12057  df-rp 12203  df-fz 12707  df-fzo 12848  df-seq 13183  df-exp 13243  df-hash 13504  df-word 13671  df-lsw 13724  df-concat 13732  df-s1 13757  df-substr 13802  df-pfx 13851  df-splice 13958  df-reverse 13976  df-s2 14070  df-struct 16339  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-mulr 16433  df-starv 16434  df-sca 16435  df-vsca 16436  df-ip 16437  df-tset 16438  df-ple 16439  df-ds 16441  df-unif 16442  df-hom 16443  df-cco 16444  df-0g 16569  df-gsum 16570  df-prds 16575  df-pws 16577  df-mre 16727  df-mrc 16728  df-acs 16730  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-mhm 17815  df-submnd 17816  df-grp 17906  df-minusg 17907  df-sbg 17908  df-mulg 18024  df-subg 18072  df-ghm 18139  df-gim 18182  df-cntz 18230  df-oppg 18257  df-symg 18279  df-pmtr 18343  df-psgn 18392  df-evpm 18393  df-cmn 18680  df-abl 18681  df-mgp 18975  df-ur 18987  df-srg 18991  df-ring 19034  df-cring 19035  df-oppr 19108  df-dvdsr 19126  df-unit 19127  df-invr 19157  df-dvr 19168  df-rnghom 19202  df-drng 19239  df-subrg 19268  df-lmod 19370  df-lss 19438  df-sra 19678  df-rgmod 19679  df-assa 19818  df-cnfld 20260  df-zring 20332  df-zrh 20365  df-dsmm 20590  df-frlm 20605  df-mamu 20709  df-mat 20733  df-mvmul 20866  df-mdet 20910  df-madu 20959
This theorem is referenced by:  slesolinvbi  21006
  Copyright terms: Public domain W3C validator