MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subscld Structured version   Visualization version   GIF version

Theorem subscld 27967
Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.)
Hypotheses
Ref Expression
subscld.1 (𝜑𝐴 No )
subscld.2 (𝜑𝐵 No )
Assertion
Ref Expression
subscld (𝜑 → (𝐴 -s 𝐵) ∈ No )

Proof of Theorem subscld
StepHypRef Expression
1 subscld.1 . 2 (𝜑𝐴 No )
2 subscld.2 . 2 (𝜑𝐵 No )
3 subscl 27966 . 2 ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) ∈ No )
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴 -s 𝐵) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  (class class class)co 7387   No csur 27551   -s csubs 27926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-0s 27736  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928
This theorem is referenced by:  pncan3s  27977  sltsubsubbd  27987  sltsubsub2bd  27988  slesubsubbd  27990  slesubsub2bd  27991  slesubsub3bd  27992  sltsubaddd  27993  slesubaddd  27997  subsubs2d  27999  posdifsd  28001  subsge0d  28003  addsubs4d  28004  mulsproplem5  28023  mulsproplem6  28024  mulsproplem7  28025  mulsproplem8  28026  mulsproplem9  28027  mulsproplem12  28030  mulsproplem13  28031  mulsproplem14  28032  slemuld  28041  ssltmul1  28050  ssltmul2  28051  mulsuniflem  28052  subsdid  28061  subsdird  28062  mulsasslem3  28068  mulsunif2lem  28072  sltmul2  28074  precsexlem8  28116  precsexlem9  28117  precsexlem11  28119  onmulscl  28175  n0sltp1le  28255  zmulscld  28285  zscut  28295  zseo  28308
  Copyright terms: Public domain W3C validator