| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subscld | Structured version Visualization version GIF version | ||
| Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| subscld.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| subscld.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| subscld | ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | subscld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | subscl 28003 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) ∈ No ) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7346 No csur 27579 -s csubs 27963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27582 df-slt 27583 df-bday 27584 df-sslt 27722 df-scut 27724 df-0s 27769 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec 27882 df-norec2 27893 df-adds 27904 df-negs 27964 df-subs 27965 |
| This theorem is referenced by: pncan3s 28014 sltsubsubbd 28024 sltsubsub2bd 28025 slesubsubbd 28027 slesubsub2bd 28028 slesubsub3bd 28029 sltsubaddd 28030 slesubaddd 28034 subsubs2d 28036 posdifsd 28038 subsge0d 28040 addsubs4d 28041 mulsproplem5 28060 mulsproplem6 28061 mulsproplem7 28062 mulsproplem8 28063 mulsproplem9 28064 mulsproplem12 28067 mulsproplem13 28068 mulsproplem14 28069 slemuld 28078 ssltmul1 28087 ssltmul2 28088 mulsuniflem 28089 subsdid 28098 subsdird 28099 mulsasslem3 28105 mulsunif2lem 28109 sltmul2 28111 precsexlem8 28153 precsexlem9 28154 precsexlem11 28156 onmulscl 28212 n0sltp1le 28292 zmulscld 28322 zscut 28332 zseo 28346 pw2cut2 28383 |
| Copyright terms: Public domain | W3C validator |