MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subscld Structured version   Visualization version   GIF version

Theorem subscld 27924
Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.)
Hypotheses
Ref Expression
subscld.1 (𝜑𝐴 No )
subscld.2 (𝜑𝐵 No )
Assertion
Ref Expression
subscld (𝜑 → (𝐴 -s 𝐵) ∈ No )

Proof of Theorem subscld
StepHypRef Expression
1 subscld.1 . 2 (𝜑𝐴 No )
2 subscld.2 . 2 (𝜑𝐵 No )
3 subscl 27923 . 2 ((𝐴 No 𝐵 No ) → (𝐴 -s 𝐵) ∈ No )
41, 2, 3syl2anc 583 1 (𝜑 → (𝐴 -s 𝐵) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  (class class class)co 7404   No csur 27524   -s csubs 27884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-1o 8464  df-2o 8465  df-nadd 8664  df-no 27527  df-slt 27528  df-bday 27529  df-sslt 27665  df-scut 27667  df-0s 27708  df-made 27725  df-old 27726  df-left 27728  df-right 27729  df-norec 27806  df-norec2 27817  df-adds 27828  df-negs 27885  df-subs 27886
This theorem is referenced by:  pncan3s  27932  sltsubsubbd  27942  sltsubsub2bd  27943  slesubsubbd  27945  slesubsub2bd  27946  slesubsub3bd  27947  sltsubaddd  27948  subsubs2d  27953  posdifsd  27955  mulsproplem5  27971  mulsproplem6  27972  mulsproplem7  27973  mulsproplem8  27974  mulsproplem9  27975  mulsproplem12  27978  mulsproplem13  27979  mulsproplem14  27980  slemuld  27989  ssltmul1  27998  ssltmul2  27999  mulsuniflem  28000  subsdid  28009  subsdird  28010  mulsasslem3  28016  mulsunif2lem  28020  sltmul2  28022  precsexlem8  28063  precsexlem9  28064  precsexlem11  28066
  Copyright terms: Public domain W3C validator