| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subscld | Structured version Visualization version GIF version | ||
| Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025.) |
| Ref | Expression |
|---|---|
| subscld.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| subscld.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| subscld | ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | subscld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | subscl 28005 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 -s 𝐵) ∈ No ) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 -s 𝐵) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 (class class class)co 7354 No csur 27581 -s csubs 27965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-1o 8393 df-2o 8394 df-nadd 8589 df-no 27584 df-slt 27585 df-bday 27586 df-sslt 27724 df-scut 27726 df-0s 27771 df-made 27791 df-old 27792 df-left 27794 df-right 27795 df-norec 27884 df-norec2 27895 df-adds 27906 df-negs 27966 df-subs 27967 |
| This theorem is referenced by: pncan3s 28016 sltsubsubbd 28026 sltsubsub2bd 28027 slesubsubbd 28029 slesubsub2bd 28030 slesubsub3bd 28031 sltsubaddd 28032 slesubaddd 28036 subsubs2d 28038 posdifsd 28040 subsge0d 28042 addsubs4d 28043 mulsproplem5 28062 mulsproplem6 28063 mulsproplem7 28064 mulsproplem8 28065 mulsproplem9 28066 mulsproplem12 28069 mulsproplem13 28070 mulsproplem14 28071 slemuld 28080 ssltmul1 28089 ssltmul2 28090 mulsuniflem 28091 subsdid 28100 subsdird 28101 mulsasslem3 28107 mulsunif2lem 28111 sltmul2 28113 precsexlem8 28155 precsexlem9 28156 precsexlem11 28158 onmulscl 28214 n0sltp1le 28294 zmulscld 28324 zscut 28334 zseo 28348 pw2cut2 28385 |
| Copyright terms: Public domain | W3C validator |