Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sublt0d | Structured version Visualization version GIF version |
Description: When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
sublt0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
sublt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
sublt0d | ⊢ (𝜑 → ((𝐴 − 𝐵) < 0 ↔ 𝐴 < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sublt0d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | sublt0d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 0red 10683 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
4 | 1, 2, 3 | ltsubaddd 11275 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) < 0 ↔ 𝐴 < (0 + 𝐵))) |
5 | 2 | recnd 10708 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
6 | 5 | addid2d 10880 | . . 3 ⊢ (𝜑 → (0 + 𝐵) = 𝐵) |
7 | 6 | breq2d 5045 | . 2 ⊢ (𝜑 → (𝐴 < (0 + 𝐵) ↔ 𝐴 < 𝐵)) |
8 | 4, 7 | bitrd 282 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) < 0 ↔ 𝐴 < 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2112 class class class wbr 5033 (class class class)co 7151 ℝcr 10575 0cc0 10576 + caddc 10579 < clt 10714 − cmin 10909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-po 5444 df-so 5445 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-ltxr 10719 df-sub 10911 df-neg 10912 |
This theorem is referenced by: modfzo0difsn 13361 eucrctshift 28128 breprexplemc 32132 fourierdlem26 43142 fourierdlem42 43158 fourierdlem60 43175 fourierdlem63 43178 digexp 45387 eenglngeehlnmlem2 45518 |
Copyright terms: Public domain | W3C validator |