Proof of Theorem modfzo0difsn
Step | Hyp | Ref
| Expression |
1 | | eldifi 4062 |
. . . . . 6
⊢ (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ (0..^𝑁)) |
2 | | elfzoelz 13396 |
. . . . . . 7
⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℤ) |
3 | 2 | zred 12435 |
. . . . . 6
⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℝ) |
4 | 1, 3 | syl 17 |
. . . . 5
⊢ (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ ℝ) |
5 | | elfzoelz 13396 |
. . . . . 6
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ) |
6 | 5 | zred 12435 |
. . . . 5
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℝ) |
7 | | leloe 11070 |
. . . . 5
⊢ ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐾 ≤ 𝐽 ↔ (𝐾 < 𝐽 ∨ 𝐾 = 𝐽))) |
8 | 4, 6, 7 | syl2anr 597 |
. . . 4
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ≤ 𝐽 ↔ (𝐾 < 𝐽 ∨ 𝐾 = 𝐽))) |
9 | | elfzo0 13437 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) |
10 | | elfzo0 13437 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) |
11 | | nn0cn 12252 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℂ) |
12 | 11 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) → 𝐾 ∈ ℂ) |
13 | 12 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → 𝐾 ∈ ℂ) |
14 | | nn0cn 12252 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐽 ∈ ℕ0
→ 𝐽 ∈
ℂ) |
15 | 14 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ) |
16 | 15 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → 𝐽 ∈ ℂ) |
17 | | nncn 11990 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
18 | 17 | 3ad2ant2 1133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ) |
19 | 18 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → 𝑁 ∈ ℂ) |
20 | 13, 16, 19 | subadd23d 11363 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → ((𝐾 − 𝐽) + 𝑁) = (𝐾 + (𝑁 − 𝐽))) |
21 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) → 𝐾 ∈
ℕ0) |
22 | | nn0z 12352 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐽 ∈ ℕ0
→ 𝐽 ∈
ℤ) |
23 | | nnz 12351 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
24 | | znnsub 12375 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 < 𝑁 ↔ (𝑁 − 𝐽) ∈ ℕ)) |
25 | 22, 23, 24 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ (𝐽 < 𝑁 ↔ (𝑁 − 𝐽) ∈ ℕ)) |
26 | 25 | biimp3a 1468 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) → (𝑁 − 𝐽) ∈ ℕ) |
27 | | nn0nnaddcl 12273 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ ℕ0
∧ (𝑁 − 𝐽) ∈ ℕ) → (𝐾 + (𝑁 − 𝐽)) ∈ ℕ) |
28 | 21, 26, 27 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → (𝐾 + (𝑁 − 𝐽)) ∈ ℕ) |
29 | 20, 28 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → ((𝐾 − 𝐽) + 𝑁) ∈ ℕ) |
30 | 29 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾 − 𝐽) + 𝑁) ∈ ℕ) |
31 | | simp2 1136 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) → 𝑁 ∈ ℕ) |
32 | 31 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → 𝑁 ∈ ℕ) |
33 | 32 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → 𝑁 ∈ ℕ) |
34 | | nn0re 12251 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℝ) |
35 | 34 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) → 𝐾 ∈ ℝ) |
36 | 35 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → 𝐾 ∈ ℝ) |
37 | | nn0re 12251 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐽 ∈ ℕ0
→ 𝐽 ∈
ℝ) |
38 | 37 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) → 𝐽 ∈ ℝ) |
39 | 38 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → 𝐽 ∈ ℝ) |
40 | 36, 39 | sublt0d 11610 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → ((𝐾 − 𝐽) < 0 ↔ 𝐾 < 𝐽)) |
41 | 40 | bicomd 222 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → (𝐾 < 𝐽 ↔ (𝐾 − 𝐽) < 0)) |
42 | 41 | biimpa 477 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → (𝐾 − 𝐽) < 0) |
43 | | resubcl 11294 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐾 − 𝐽) ∈ ℝ) |
44 | 35, 38, 43 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → (𝐾 − 𝐽) ∈ ℝ) |
45 | | nnre 11989 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
46 | 45 | 3ad2ant2 1133 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ) |
47 | 46 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → 𝑁 ∈ ℝ) |
48 | 44, 47 | jca 512 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) → ((𝐾 − 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
49 | 48 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾 − 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
50 | | ltaddnegr 11200 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐾 − 𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾 − 𝐽) < 0 ↔ ((𝐾 − 𝐽) + 𝑁) < 𝑁)) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾 − 𝐽) < 0 ↔ ((𝐾 − 𝐽) + 𝑁) < 𝑁)) |
52 | 42, 51 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾 − 𝐽) + 𝑁) < 𝑁) |
53 | | elfzo1 13446 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 − 𝐽) + 𝑁) ∈ (1..^𝑁) ↔ (((𝐾 − 𝐽) + 𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ((𝐾 − 𝐽) + 𝑁) < 𝑁)) |
54 | 30, 33, 52, 53 | syl3anbrc 1342 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾 − 𝐽) + 𝑁) ∈ (1..^𝑁)) |
55 | 54 | exp31 420 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) → ((𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁) → (𝐾 < 𝐽 → ((𝐾 − 𝐽) + 𝑁) ∈ (1..^𝑁)))) |
56 | 10, 55 | sylbi 216 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (0..^𝑁) → ((𝐾 ∈ ℕ0 ∧ 𝐾 < 𝑁) → (𝐾 < 𝐽 → ((𝐾 − 𝐽) + 𝑁) ∈ (1..^𝑁)))) |
57 | 56 | com12 32 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾 − 𝐽) + 𝑁) ∈ (1..^𝑁)))) |
58 | 57 | 3adant2 1130 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐾 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾 − 𝐽) + 𝑁) ∈ (1..^𝑁)))) |
59 | 9, 58 | sylbi 216 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾 − 𝐽) + 𝑁) ∈ (1..^𝑁)))) |
60 | 1, 59 | syl 17 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾 − 𝐽) + 𝑁) ∈ (1..^𝑁)))) |
61 | 60 | impcom 408 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 < 𝐽 → ((𝐾 − 𝐽) + 𝑁) ∈ (1..^𝑁))) |
62 | 61 | impcom 408 |
. . . . . . . 8
⊢ ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾 − 𝐽) + 𝑁) ∈ (1..^𝑁)) |
63 | | oveq1 7291 |
. . . . . . . . . . 11
⊢ (𝑖 = ((𝐾 − 𝐽) + 𝑁) → (𝑖 + 𝐽) = (((𝐾 − 𝐽) + 𝑁) + 𝐽)) |
64 | 2 | zcnd 12436 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℂ) |
65 | 64 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ)) → 𝐾 ∈
ℂ) |
66 | 14 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ 𝐽 ∈
ℂ) |
67 | 66 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ)) → 𝐽 ∈
ℂ) |
68 | 17 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ 𝑁 ∈
ℂ) |
69 | 68 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ)) → 𝑁 ∈
ℂ) |
70 | 65, 67, 69 | 3jca 1127 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ)) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈
ℂ)) |
71 | 70 | ex 413 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (0..^𝑁) → ((𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈
ℂ))) |
72 | 1, 71 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → ((𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈
ℂ))) |
73 | 72 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ)
→ (𝐾 ∈
((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))) |
74 | 73 | 3adant3 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))) |
75 | 10, 74 | sylbi 216 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))) |
76 | 75 | imp 407 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
77 | 76 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)) |
78 | | nppcan 11252 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝐾 − 𝐽) + 𝑁) + 𝐽) = (𝐾 + 𝑁)) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (((𝐾 − 𝐽) + 𝑁) + 𝐽) = (𝐾 + 𝑁)) |
80 | 63, 79 | sylan9eqr 2801 |
. . . . . . . . . 10
⊢ (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾 − 𝐽) + 𝑁)) → (𝑖 + 𝐽) = (𝐾 + 𝑁)) |
81 | 80 | oveq1d 7299 |
. . . . . . . . 9
⊢ (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾 − 𝐽) + 𝑁)) → ((𝑖 + 𝐽) mod 𝑁) = ((𝐾 + 𝑁) mod 𝑁)) |
82 | 81 | eqeq2d 2750 |
. . . . . . . 8
⊢ (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾 − 𝐽) + 𝑁)) → (𝐾 = ((𝑖 + 𝐽) mod 𝑁) ↔ 𝐾 = ((𝐾 + 𝑁) mod 𝑁))) |
83 | 9 | biimpi 215 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) |
84 | 83 | a1d 25 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))) |
85 | 1, 84 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))) |
86 | 85 | impcom 408 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) |
87 | 86 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) |
88 | | addmodidr 13649 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐾 < 𝑁) → ((𝐾 + 𝑁) mod 𝑁) = 𝐾) |
89 | 88 | eqcomd 2745 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐾 < 𝑁) → 𝐾 = ((𝐾 + 𝑁) mod 𝑁)) |
90 | 87, 89 | syl 17 |
. . . . . . . 8
⊢ ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → 𝐾 = ((𝐾 + 𝑁) mod 𝑁)) |
91 | 62, 82, 90 | rspcedvd 3564 |
. . . . . . 7
⊢ ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)) |
92 | 91 | ex 413 |
. . . . . 6
⊢ (𝐾 < 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))) |
93 | | eldifsn 4721 |
. . . . . . . . 9
⊢ (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 𝐽)) |
94 | | eqneqall 2955 |
. . . . . . . . . . 11
⊢ (𝐾 = 𝐽 → (𝐾 ≠ 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))) |
95 | 94 | com12 32 |
. . . . . . . . . 10
⊢ (𝐾 ≠ 𝐽 → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))) |
96 | 95 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 𝐽) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))) |
97 | 93, 96 | sylbi 216 |
. . . . . . . 8
⊢ (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))) |
98 | 97 | adantl 482 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))) |
99 | 98 | com12 32 |
. . . . . 6
⊢ (𝐾 = 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))) |
100 | 92, 99 | jaoi 854 |
. . . . 5
⊢ ((𝐾 < 𝐽 ∨ 𝐾 = 𝐽) → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))) |
101 | 100 | com12 32 |
. . . 4
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ((𝐾 < 𝐽 ∨ 𝐾 = 𝐽) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))) |
102 | 8, 101 | sylbid 239 |
. . 3
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ≤ 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))) |
103 | 102 | com12 32 |
. 2
⊢ (𝐾 ≤ 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))) |
104 | | ltnle 11063 |
. . . . . . . . 9
⊢ ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝐽 < 𝐾 ↔ ¬ 𝐾 ≤ 𝐽)) |
105 | 6, 4, 104 | syl2an 596 |
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐽 < 𝐾 ↔ ¬ 𝐾 ≤ 𝐽)) |
106 | 105 | bicomd 222 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (¬ 𝐾 ≤ 𝐽 ↔ 𝐽 < 𝐾)) |
107 | 22 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) → 𝐽 ∈ ℤ) |
108 | | nn0z 12352 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℤ) |
109 | 108 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) → 𝐾 ∈ ℤ) |
110 | | znnsub 12375 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 < 𝐾 ↔ (𝐾 − 𝐽) ∈ ℕ)) |
111 | 107, 109,
110 | syl2anr 597 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 < 𝐾 ↔ (𝐾 − 𝐽) ∈ ℕ)) |
112 | 111 | biimpa 477 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → (𝐾 − 𝐽) ∈ ℕ) |
113 | 31 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℕ) |
114 | 113 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → 𝑁 ∈ ℕ) |
115 | | nn0ge0 12267 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐽 ∈ ℕ0
→ 0 ≤ 𝐽) |
116 | 115 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) → 0 ≤ 𝐽) |
117 | 116 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ ℕ0
∧ (𝐽 ∈
ℕ0 ∧ 𝑁
∈ ℕ ∧ 𝐽 <
𝑁)) → 0 ≤ 𝐽) |
118 | | subge02 11500 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (0 ≤
𝐽 ↔ (𝐾 − 𝐽) ≤ 𝐾)) |
119 | 34, 38, 118 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ ℕ0
∧ (𝐽 ∈
ℕ0 ∧ 𝑁
∈ ℕ ∧ 𝐽 <
𝑁)) → (0 ≤ 𝐽 ↔ (𝐾 − 𝐽) ≤ 𝐾)) |
120 | 117, 119 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ ℕ0
∧ (𝐽 ∈
ℕ0 ∧ 𝑁
∈ ℕ ∧ 𝐽 <
𝑁)) → (𝐾 − 𝐽) ≤ 𝐾) |
121 | 38 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐾 ∈ ℕ0
∧ (𝐽 ∈
ℕ0 ∧ 𝑁
∈ ℕ ∧ 𝐽 <
𝑁)) → 𝐽 ∈
ℝ) |
122 | 34 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐾 ∈ ℕ0
∧ (𝐽 ∈
ℕ0 ∧ 𝑁
∈ ℕ ∧ 𝐽 <
𝑁)) → 𝐾 ∈
ℝ) |
123 | 46 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐾 ∈ ℕ0
∧ (𝐽 ∈
ℕ0 ∧ 𝑁
∈ ℕ ∧ 𝐽 <
𝑁)) → 𝑁 ∈
ℝ) |
124 | 121, 122,
123 | 3jca 1127 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐾 ∈ ℕ0
∧ (𝐽 ∈
ℕ0 ∧ 𝑁
∈ ℕ ∧ 𝐽 <
𝑁)) → (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈
ℝ)) |
125 | 43 | ancoms 459 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝐾 − 𝐽) ∈ ℝ) |
126 | 125 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 − 𝐽) ∈ ℝ) |
127 | | simp2 1136 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝐾 ∈
ℝ) |
128 | | simp3 1137 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈
ℝ) |
129 | 126, 127,
128 | 3jca 1127 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾 − 𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
130 | 124, 129 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ ℕ0
∧ (𝐽 ∈
ℕ0 ∧ 𝑁
∈ ℕ ∧ 𝐽 <
𝑁)) → ((𝐾 − 𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
131 | | lelttr 11074 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐾 − 𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐾 − 𝐽) ≤ 𝐾 ∧ 𝐾 < 𝑁) → (𝐾 − 𝐽) < 𝑁)) |
132 | 130, 131 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ ℕ0
∧ (𝐽 ∈
ℕ0 ∧ 𝑁
∈ ℕ ∧ 𝐽 <
𝑁)) → (((𝐾 − 𝐽) ≤ 𝐾 ∧ 𝐾 < 𝑁) → (𝐾 − 𝐽) < 𝑁)) |
133 | 120, 132 | mpand 692 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ ℕ0
∧ (𝐽 ∈
ℕ0 ∧ 𝑁
∈ ℕ ∧ 𝐽 <
𝑁)) → (𝐾 < 𝑁 → (𝐾 − 𝐽) < 𝑁)) |
134 | 133 | impancom 452 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) → ((𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 − 𝐽) < 𝑁)) |
135 | 134 | imp 407 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾 − 𝐽) < 𝑁) |
136 | 135 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → (𝐾 − 𝐽) < 𝑁) |
137 | 112, 114,
136 | 3jca 1127 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → ((𝐾 − 𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 − 𝐽) < 𝑁)) |
138 | 137 | exp31 420 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℕ0
∧ 𝐾 < 𝑁) → ((𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾 − 𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 − 𝐽) < 𝑁)))) |
139 | 138 | 3adant2 1130 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐾 < 𝑁) → ((𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾 − 𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 − 𝐽) < 𝑁)))) |
140 | 9, 139 | sylbi 216 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (0..^𝑁) → ((𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾 − 𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 − 𝐽) < 𝑁)))) |
141 | 1, 140 | syl 17 |
. . . . . . . . . 10
⊢ (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → ((𝐽 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾 − 𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 − 𝐽) < 𝑁)))) |
142 | 141 | com12 32 |
. . . . . . . . 9
⊢ ((𝐽 ∈ ℕ0
∧ 𝑁 ∈ ℕ
∧ 𝐽 < 𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 < 𝐾 → ((𝐾 − 𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 − 𝐽) < 𝑁)))) |
143 | 10, 142 | sylbi 216 |
. . . . . . . 8
⊢ (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 < 𝐾 → ((𝐾 − 𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 − 𝐽) < 𝑁)))) |
144 | 143 | imp 407 |
. . . . . . 7
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐽 < 𝐾 → ((𝐾 − 𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 − 𝐽) < 𝑁))) |
145 | 106, 144 | sylbid 239 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (¬ 𝐾 ≤ 𝐽 → ((𝐾 − 𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 − 𝐽) < 𝑁))) |
146 | 145 | impcom 408 |
. . . . 5
⊢ ((¬
𝐾 ≤ 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾 − 𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 − 𝐽) < 𝑁)) |
147 | | elfzo1 13446 |
. . . . 5
⊢ ((𝐾 − 𝐽) ∈ (1..^𝑁) ↔ ((𝐾 − 𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾 − 𝐽) < 𝑁)) |
148 | 146, 147 | sylibr 233 |
. . . 4
⊢ ((¬
𝐾 ≤ 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 − 𝐽) ∈ (1..^𝑁)) |
149 | | oveq1 7291 |
. . . . . . 7
⊢ (𝑖 = (𝐾 − 𝐽) → (𝑖 + 𝐽) = ((𝐾 − 𝐽) + 𝐽)) |
150 | 1, 64 | syl 17 |
. . . . . . . . 9
⊢ (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ ℂ) |
151 | 5 | zcnd 12436 |
. . . . . . . . 9
⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ) |
152 | | npcan 11239 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ) → ((𝐾 − 𝐽) + 𝐽) = 𝐾) |
153 | 150, 151,
152 | syl2anr 597 |
. . . . . . . 8
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ((𝐾 − 𝐽) + 𝐽) = 𝐾) |
154 | 153 | adantl 482 |
. . . . . . 7
⊢ ((¬
𝐾 ≤ 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾 − 𝐽) + 𝐽) = 𝐾) |
155 | 149, 154 | sylan9eqr 2801 |
. . . . . 6
⊢ (((¬
𝐾 ≤ 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾 − 𝐽)) → (𝑖 + 𝐽) = 𝐾) |
156 | 155 | oveq1d 7299 |
. . . . 5
⊢ (((¬
𝐾 ≤ 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾 − 𝐽)) → ((𝑖 + 𝐽) mod 𝑁) = (𝐾 mod 𝑁)) |
157 | 156 | eqeq2d 2750 |
. . . 4
⊢ (((¬
𝐾 ≤ 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾 − 𝐽)) → (𝐾 = ((𝑖 + 𝐽) mod 𝑁) ↔ 𝐾 = (𝐾 mod 𝑁))) |
158 | | zmodidfzoimp 13630 |
. . . . . . . 8
⊢ (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾) |
159 | 1, 158 | syl 17 |
. . . . . . 7
⊢ (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 mod 𝑁) = 𝐾) |
160 | 159 | adantl 482 |
. . . . . 6
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 mod 𝑁) = 𝐾) |
161 | 160 | adantl 482 |
. . . . 5
⊢ ((¬
𝐾 ≤ 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 mod 𝑁) = 𝐾) |
162 | 161 | eqcomd 2745 |
. . . 4
⊢ ((¬
𝐾 ≤ 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → 𝐾 = (𝐾 mod 𝑁)) |
163 | 148, 157,
162 | rspcedvd 3564 |
. . 3
⊢ ((¬
𝐾 ≤ 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)) |
164 | 163 | ex 413 |
. 2
⊢ (¬
𝐾 ≤ 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))) |
165 | 103, 164 | pm2.61i 182 |
1
⊢ ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)) |