MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modfzo0difsn Structured version   Visualization version   GIF version

Theorem modfzo0difsn 13314
Description: For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modfzo0difsn ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
Distinct variable groups:   𝑖,𝐽   𝑖,𝐾   𝑖,𝑁

Proof of Theorem modfzo0difsn
StepHypRef Expression
1 eldifi 4105 . . . . . 6 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ (0..^𝑁))
2 elfzoelz 13041 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℤ)
32zred 12090 . . . . . 6 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℝ)
41, 3syl 17 . . . . 5 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ ℝ)
5 elfzoelz 13041 . . . . . 6 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
65zred 12090 . . . . 5 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℝ)
7 leloe 10729 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐾𝐽 ↔ (𝐾 < 𝐽𝐾 = 𝐽)))
84, 6, 7syl2anr 598 . . . 4 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾𝐽 ↔ (𝐾 < 𝐽𝐾 = 𝐽)))
9 elfzo0 13081 . . . . . . . . . . . 12 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
10 elfzo0 13081 . . . . . . . . . . . . . . 15 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
11 nn0cn 11910 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
1211adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℂ)
1312adantl 484 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐾 ∈ ℂ)
14 nn0cn 11910 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ ℕ0𝐽 ∈ ℂ)
15143ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ)
1615adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐽 ∈ ℂ)
17 nncn 11648 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
18173ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ)
1918adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℂ)
2013, 16, 19subadd23d 11021 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) + 𝑁) = (𝐾 + (𝑁𝐽)))
21 simpl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
22 nn0z 12008 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ ℕ0𝐽 ∈ ℤ)
23 nnz 12007 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
24 znnsub 12031 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 < 𝑁 ↔ (𝑁𝐽) ∈ ℕ))
2522, 23, 24syl2an 597 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 < 𝑁 ↔ (𝑁𝐽) ∈ ℕ))
2625biimp3a 1465 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁𝐽) ∈ ℕ)
27 nn0nnaddcl 11931 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝑁𝐽) ∈ ℕ) → (𝐾 + (𝑁𝐽)) ∈ ℕ)
2821, 26, 27syl2anr 598 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾 + (𝑁𝐽)) ∈ ℕ)
2920, 28eqeltrd 2915 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) + 𝑁) ∈ ℕ)
3029adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) ∈ ℕ)
31 simp2 1133 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℕ)
3231adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℕ)
3332adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → 𝑁 ∈ ℕ)
34 nn0re 11909 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
3534adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℝ)
3635adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐾 ∈ ℝ)
37 nn0re 11909 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ ℕ0𝐽 ∈ ℝ)
38373ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℝ)
3938adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐽 ∈ ℝ)
4036, 39sublt0d 11268 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) < 0 ↔ 𝐾 < 𝐽))
4140bicomd 225 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾 < 𝐽 ↔ (𝐾𝐽) < 0))
4241biimpa 479 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → (𝐾𝐽) < 0)
43 resubcl 10952 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
4435, 38, 43syl2anr 598 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾𝐽) ∈ ℝ)
45 nnre 11647 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
46453ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ)
4746adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℝ)
4844, 47jca 514 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ))
4948adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ))
50 ltaddnegr 10858 . . . . . . . . . . . . . . . . . . 19 (((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝐽) < 0 ↔ ((𝐾𝐽) + 𝑁) < 𝑁))
5149, 50syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) < 0 ↔ ((𝐾𝐽) + 𝑁) < 𝑁))
5242, 51mpbid 234 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) < 𝑁)
53 elfzo1 13090 . . . . . . . . . . . . . . . . 17 (((𝐾𝐽) + 𝑁) ∈ (1..^𝑁) ↔ (((𝐾𝐽) + 𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ((𝐾𝐽) + 𝑁) < 𝑁))
5430, 33, 52, 53syl3anbrc 1339 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))
5554exp31 422 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
5610, 55sylbi 219 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
5756com12 32 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
58573adant2 1127 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
599, 58sylbi 219 . . . . . . . . . . 11 (𝐾 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
601, 59syl 17 . . . . . . . . . 10 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
6160impcom 410 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁)))
6261impcom 410 . . . . . . . 8 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))
63 oveq1 7165 . . . . . . . . . . 11 (𝑖 = ((𝐾𝐽) + 𝑁) → (𝑖 + 𝐽) = (((𝐾𝐽) + 𝑁) + 𝐽))
642zcnd 12091 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℂ)
6564adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐾 ∈ ℂ)
6614adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → 𝐽 ∈ ℂ)
6766adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐽 ∈ ℂ)
6817adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
6968adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
7065, 67, 693jca 1124 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
7170ex 415 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (0..^𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
721, 71syl 17 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7372com12 32 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
74733adant3 1128 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7510, 74sylbi 219 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7675imp 409 . . . . . . . . . . . . 13 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
7776adantl 484 . . . . . . . . . . . 12 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
78 nppcan 10910 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝐾𝐽) + 𝑁) + 𝐽) = (𝐾 + 𝑁))
7977, 78syl 17 . . . . . . . . . . 11 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (((𝐾𝐽) + 𝑁) + 𝐽) = (𝐾 + 𝑁))
8063, 79sylan9eqr 2880 . . . . . . . . . 10 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → (𝑖 + 𝐽) = (𝐾 + 𝑁))
8180oveq1d 7173 . . . . . . . . 9 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → ((𝑖 + 𝐽) mod 𝑁) = ((𝐾 + 𝑁) mod 𝑁))
8281eqeq2d 2834 . . . . . . . 8 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → (𝐾 = ((𝑖 + 𝐽) mod 𝑁) ↔ 𝐾 = ((𝐾 + 𝑁) mod 𝑁)))
839biimpi 218 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
8483a1d 25 . . . . . . . . . . . 12 (𝐾 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)))
851, 84syl 17 . . . . . . . . . . 11 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)))
8685impcom 410 . . . . . . . . . 10 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
8786adantl 484 . . . . . . . . 9 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
88 addmodidr 13291 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝐾 + 𝑁) mod 𝑁) = 𝐾)
8988eqcomd 2829 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 = ((𝐾 + 𝑁) mod 𝑁))
9087, 89syl 17 . . . . . . . 8 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → 𝐾 = ((𝐾 + 𝑁) mod 𝑁))
9162, 82, 90rspcedvd 3628 . . . . . . 7 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
9291ex 415 . . . . . 6 (𝐾 < 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
93 eldifsn 4721 . . . . . . . . 9 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾𝐽))
94 eqneqall 3029 . . . . . . . . . . 11 (𝐾 = 𝐽 → (𝐾𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9594com12 32 . . . . . . . . . 10 (𝐾𝐽 → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9695adantl 484 . . . . . . . . 9 ((𝐾 ∈ (0..^𝑁) ∧ 𝐾𝐽) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9793, 96sylbi 219 . . . . . . . 8 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9897adantl 484 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9998com12 32 . . . . . 6 (𝐾 = 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
10092, 99jaoi 853 . . . . 5 ((𝐾 < 𝐽𝐾 = 𝐽) → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
101100com12 32 . . . 4 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ((𝐾 < 𝐽𝐾 = 𝐽) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
1028, 101sylbid 242 . . 3 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
103102com12 32 . 2 (𝐾𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
104 ltnle 10722 . . . . . . . . 9 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝐽 < 𝐾 ↔ ¬ 𝐾𝐽))
1056, 4, 104syl2an 597 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐽 < 𝐾 ↔ ¬ 𝐾𝐽))
106105bicomd 225 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (¬ 𝐾𝐽𝐽 < 𝐾))
107223ad2ant1 1129 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℤ)
108 nn0z 12008 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
109108adantr 483 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℤ)
110 znnsub 12031 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 < 𝐾 ↔ (𝐾𝐽) ∈ ℕ))
111107, 109, 110syl2anr 598 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 < 𝐾 ↔ (𝐾𝐽) ∈ ℕ))
112111biimpa 479 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → (𝐾𝐽) ∈ ℕ)
11331adantl 484 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℕ)
114113adantr 483 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → 𝑁 ∈ ℕ)
115 nn0ge0 11925 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ ℕ0 → 0 ≤ 𝐽)
1161153ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 0 ≤ 𝐽)
117116adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 ≤ 𝐽)
118 subge02 11158 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (0 ≤ 𝐽 ↔ (𝐾𝐽) ≤ 𝐾))
11934, 38, 118syl2an 597 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 ≤ 𝐽 ↔ (𝐾𝐽) ≤ 𝐾))
120117, 119mpbid 234 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾𝐽) ≤ 𝐾)
12138adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐽 ∈ ℝ)
12234adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐾 ∈ ℝ)
12346adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℝ)
124121, 122, 1233jca 1124 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
12543ancoms 461 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
1261253adant3 1128 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
127 simp2 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝐾 ∈ ℝ)
128 simp3 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈ ℝ)
129126, 127, 1283jca 1124 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
130124, 129syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
131 lelttr 10733 . . . . . . . . . . . . . . . . . . . 20 (((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐾𝐽) ≤ 𝐾𝐾 < 𝑁) → (𝐾𝐽) < 𝑁))
132130, 131syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (((𝐾𝐽) ≤ 𝐾𝐾 < 𝑁) → (𝐾𝐽) < 𝑁))
133120, 132mpand 693 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾 < 𝑁 → (𝐾𝐽) < 𝑁))
134133impancom 454 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾𝐽) < 𝑁))
135134imp 409 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾𝐽) < 𝑁)
136135adantr 483 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → (𝐾𝐽) < 𝑁)
137112, 114, 1363jca 1124 . . . . . . . . . . . . . 14 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
138137exp31 422 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
1391383adant2 1127 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
1409, 139sylbi 219 . . . . . . . . . . 11 (𝐾 ∈ (0..^𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
1411, 140syl 17 . . . . . . . . . 10 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
142141com12 32 . . . . . . . . 9 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
14310, 142sylbi 219 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
144143imp 409 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁)))
145106, 144sylbid 242 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (¬ 𝐾𝐽 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁)))
146145impcom 410 . . . . 5 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
147 elfzo1 13090 . . . . 5 ((𝐾𝐽) ∈ (1..^𝑁) ↔ ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
148146, 147sylibr 236 . . . 4 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾𝐽) ∈ (1..^𝑁))
149 oveq1 7165 . . . . . . 7 (𝑖 = (𝐾𝐽) → (𝑖 + 𝐽) = ((𝐾𝐽) + 𝐽))
1501, 64syl 17 . . . . . . . . 9 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ ℂ)
1515zcnd 12091 . . . . . . . . 9 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ)
152 npcan 10897 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ) → ((𝐾𝐽) + 𝐽) = 𝐾)
153150, 151, 152syl2anr 598 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ((𝐾𝐽) + 𝐽) = 𝐾)
154153adantl 484 . . . . . . 7 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) + 𝐽) = 𝐾)
155149, 154sylan9eqr 2880 . . . . . 6 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → (𝑖 + 𝐽) = 𝐾)
156155oveq1d 7173 . . . . 5 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → ((𝑖 + 𝐽) mod 𝑁) = (𝐾 mod 𝑁))
157156eqeq2d 2834 . . . 4 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → (𝐾 = ((𝑖 + 𝐽) mod 𝑁) ↔ 𝐾 = (𝐾 mod 𝑁)))
158 zmodidfzoimp 13272 . . . . . . . 8 (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾)
1591, 158syl 17 . . . . . . 7 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 mod 𝑁) = 𝐾)
160159adantl 484 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 mod 𝑁) = 𝐾)
161160adantl 484 . . . . 5 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 mod 𝑁) = 𝐾)
162161eqcomd 2829 . . . 4 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → 𝐾 = (𝐾 mod 𝑁))
163148, 157, 162rspcedvd 3628 . . 3 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
164163ex 415 . 2 𝐾𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
165103, 164pm2.61i 184 1 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wrex 3141  cdif 3935  {csn 4569   class class class wbr 5068  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   < clt 10677  cle 10678  cmin 10872  cn 11640  0cn0 11900  cz 11984  ..^cfzo 13036   mod cmo 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241
This theorem is referenced by:  cshimadifsn  14193
  Copyright terms: Public domain W3C validator