| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltsubaddd | Structured version Visualization version GIF version | ||
| Description: 'Less than' relationship between subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ltsubaddd | ⊢ (𝜑 → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 + 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | ltadd1d.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | ltsubadd 11587 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 + 𝐵))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) < 𝐶 ↔ 𝐴 < (𝐶 + 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 + caddc 11009 < clt 11146 − cmin 11344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 |
| This theorem is referenced by: sublt0d 11743 ltaddsublt 11744 supaddc 12089 suprzcl 12553 2submod 13839 hashdvds 16686 prmreclem6 16833 4sqlem6 16855 ovolshftlem1 25437 opnmbllem 25529 mbfaddlem 25588 itg2monolem1 25678 dvlt0 25937 lhop1 25946 plydivlem3 26230 efif1olem1 26478 ang180lem2 26747 atanlogsublem 26852 bposlem1 27222 crctcshwlkn0lem5 29792 eucrctshift 30223 bcm1n 32777 subfacval3 35233 opnmbllem0 37706 itg2addnclem 37721 itg2gt0cn 37725 aks4d1p1p3 42172 aks4d1p1 42179 posbezout 42203 iooiinicc 45652 0ellimcdiv 45757 wallispilem3 46175 fourierdlem41 46256 fourierdlem49 46263 fourierdlem97 46311 elaa2lem 46341 sge0ltfirp 46508 ceilbi 47443 sfprmdvdsmersenne 47713 proththdlem 47723 ltsubaddb 48625 ltsubsubb 48626 ltsubadd2b 48627 |
| Copyright terms: Public domain | W3C validator |