MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1mul3le Structured version   Visualization version   GIF version

Theorem deg1mul3le 26072
Description: Degree of multiplication of a polynomial on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
deg1mul3le.d 𝐷 = (deg1𝑅)
deg1mul3le.p 𝑃 = (Poly1𝑅)
deg1mul3le.k 𝐾 = (Base‘𝑅)
deg1mul3le.b 𝐵 = (Base‘𝑃)
deg1mul3le.t · = (.r𝑃)
deg1mul3le.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
deg1mul3le ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) ≤ (𝐷𝐺))

Proof of Theorem deg1mul3le
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 deg1mul3le.p . . . . . . . 8 𝑃 = (Poly1𝑅)
21ply1ring 22181 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant1 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝑃 ∈ Ring)
4 deg1mul3le.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
5 deg1mul3le.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
6 deg1mul3le.b . . . . . . . . 9 𝐵 = (Base‘𝑃)
71, 4, 5, 6ply1sclf 22220 . . . . . . . 8 (𝑅 ∈ Ring → 𝐴:𝐾𝐵)
873ad2ant1 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐴:𝐾𝐵)
9 simp2 1137 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐹𝐾)
108, 9ffvelcdmd 7074 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐴𝐹) ∈ 𝐵)
11 simp3 1138 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐺𝐵)
12 deg1mul3le.t . . . . . . 7 · = (.r𝑃)
136, 12ringcl 20208 . . . . . 6 ((𝑃 ∈ Ring ∧ (𝐴𝐹) ∈ 𝐵𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
143, 10, 11, 13syl3anc 1373 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
15 eqid 2735 . . . . . 6 (coe1‘((𝐴𝐹) · 𝐺)) = (coe1‘((𝐴𝐹) · 𝐺))
1615, 6, 1, 5coe1f 22145 . . . . 5 (((𝐴𝐹) · 𝐺) ∈ 𝐵 → (coe1‘((𝐴𝐹) · 𝐺)):ℕ0𝐾)
1714, 16syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (coe1‘((𝐴𝐹) · 𝐺)):ℕ0𝐾)
18 eldifi 4106 . . . . . 6 (𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅))) → 𝑎 ∈ ℕ0)
19 simpl1 1192 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝑅 ∈ Ring)
20 simpl2 1193 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝐹𝐾)
21 simpl3 1194 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝐺𝐵)
22 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝑎 ∈ ℕ0)
23 eqid 2735 . . . . . . . 8 (.r𝑅) = (.r𝑅)
241, 6, 5, 4, 12, 23coe1sclmulfv 22218 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
2519, 20, 21, 22, 24syl121anc 1377 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
2618, 25sylan2 593 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
27 eqid 2735 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
2827, 6, 1, 5coe1f 22145 . . . . . . . 8 (𝐺𝐵 → (coe1𝐺):ℕ0𝐾)
29283ad2ant3 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (coe1𝐺):ℕ0𝐾)
30 ssidd 3982 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)))
31 nn0ex 12505 . . . . . . . 8 0 ∈ V
3231a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ℕ0 ∈ V)
33 fvexd 6890 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (0g𝑅) ∈ V)
3429, 30, 32, 33suppssr 8192 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1𝐺)‘𝑎) = (0g𝑅))
3534oveq2d 7419 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → (𝐹(.r𝑅)((coe1𝐺)‘𝑎)) = (𝐹(.r𝑅)(0g𝑅)))
36 eqid 2735 . . . . . . . 8 (0g𝑅) = (0g𝑅)
375, 23, 36ringrz 20252 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
38373adant3 1132 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
3938adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
4026, 35, 393eqtrd 2774 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (0g𝑅))
4117, 40suppss 8191 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)))
42 suppssdm 8174 . . . . 5 ((coe1𝐺) supp (0g𝑅)) ⊆ dom (coe1𝐺)
4342, 29fssdm 6724 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ℕ0)
44 nn0ssre 12503 . . . . 5 0 ⊆ ℝ
45 ressxr 11277 . . . . 5 ℝ ⊆ ℝ*
4644, 45sstri 3968 . . . 4 0 ⊆ ℝ*
4743, 46sstrdi 3971 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ℝ*)
48 supxrss 13346 . . 3 ((((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)) ∧ ((coe1𝐺) supp (0g𝑅)) ⊆ ℝ*) → sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ) ≤ sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
4941, 47, 48syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ) ≤ sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
50 deg1mul3le.d . . . 4 𝐷 = (deg1𝑅)
5150, 1, 6, 36, 15deg1val 26051 . . 3 (((𝐴𝐹) · 𝐺) ∈ 𝐵 → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
5214, 51syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
5350, 1, 6, 36, 27deg1val 26051 . . 3 (𝐺𝐵 → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
54533ad2ant3 1135 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
5549, 52, 543brtr4d 5151 1 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) ≤ (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cdif 3923  wss 3926   class class class wbr 5119  wf 6526  cfv 6530  (class class class)co 7403   supp csupp 8157  supcsup 9450  cr 11126  *cxr 11266   < clt 11267  cle 11268  0cn0 12499  Basecbs 17226  .rcmulr 17270  0gc0g 17451  Ringcrg 20191  algSccascl 21810  Poly1cpl1 22110  coe1cco1 22111  deg1cdg1 26009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-subrng 20504  df-subrg 20528  df-lmod 20817  df-lss 20887  df-cnfld 21314  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-psr1 22113  df-vr1 22114  df-ply1 22115  df-coe1 22116  df-mdeg 26010  df-deg1 26011
This theorem is referenced by:  rtelextdg2lem  33706  hbtlem2  43095
  Copyright terms: Public domain W3C validator