Step | Hyp | Ref
| Expression |
1 | | deg1mul3le.p |
. . . . . . . 8
β’ π = (Poly1βπ
) |
2 | 1 | ply1ring 21761 |
. . . . . . 7
β’ (π
β Ring β π β Ring) |
3 | 2 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β π β Ring) |
4 | | deg1mul3le.a |
. . . . . . . . 9
β’ π΄ = (algScβπ) |
5 | | deg1mul3le.k |
. . . . . . . . 9
β’ πΎ = (Baseβπ
) |
6 | | deg1mul3le.b |
. . . . . . . . 9
β’ π΅ = (Baseβπ) |
7 | 1, 4, 5, 6 | ply1sclf 21798 |
. . . . . . . 8
β’ (π
β Ring β π΄:πΎβΆπ΅) |
8 | 7 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β π΄:πΎβΆπ΅) |
9 | | simp2 1137 |
. . . . . . 7
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β πΉ β πΎ) |
10 | 8, 9 | ffvelcdmd 7084 |
. . . . . 6
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β (π΄βπΉ) β π΅) |
11 | | simp3 1138 |
. . . . . 6
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β πΊ β π΅) |
12 | | deg1mul3le.t |
. . . . . . 7
β’ Β· =
(.rβπ) |
13 | 6, 12 | ringcl 20066 |
. . . . . 6
β’ ((π β Ring β§ (π΄βπΉ) β π΅ β§ πΊ β π΅) β ((π΄βπΉ) Β· πΊ) β π΅) |
14 | 3, 10, 11, 13 | syl3anc 1371 |
. . . . 5
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β ((π΄βπΉ) Β· πΊ) β π΅) |
15 | | eqid 2732 |
. . . . . 6
β’
(coe1β((π΄βπΉ) Β· πΊ)) = (coe1β((π΄βπΉ) Β· πΊ)) |
16 | 15, 6, 1, 5 | coe1f 21726 |
. . . . 5
β’ (((π΄βπΉ) Β· πΊ) β π΅ β (coe1β((π΄βπΉ) Β· πΊ)):β0βΆπΎ) |
17 | 14, 16 | syl 17 |
. . . 4
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β (coe1β((π΄βπΉ) Β· πΊ)):β0βΆπΎ) |
18 | | eldifi 4125 |
. . . . . 6
β’ (π β (β0
β ((coe1βπΊ) supp (0gβπ
))) β π β β0) |
19 | | simpl1 1191 |
. . . . . . 7
β’ (((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β§ π β β0) β π
β Ring) |
20 | | simpl2 1192 |
. . . . . . 7
β’ (((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β§ π β β0) β πΉ β πΎ) |
21 | | simpl3 1193 |
. . . . . . 7
β’ (((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β§ π β β0) β πΊ β π΅) |
22 | | simpr 485 |
. . . . . . 7
β’ (((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β§ π β β0) β π β
β0) |
23 | | eqid 2732 |
. . . . . . . 8
β’
(.rβπ
) = (.rβπ
) |
24 | 1, 6, 5, 4, 12, 23 | coe1sclmulfv 21796 |
. . . . . . 7
β’ ((π
β Ring β§ (πΉ β πΎ β§ πΊ β π΅) β§ π β β0) β
((coe1β((π΄βπΉ) Β· πΊ))βπ) = (πΉ(.rβπ
)((coe1βπΊ)βπ))) |
25 | 19, 20, 21, 22, 24 | syl121anc 1375 |
. . . . . 6
β’ (((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β§ π β β0) β
((coe1β((π΄βπΉ) Β· πΊ))βπ) = (πΉ(.rβπ
)((coe1βπΊ)βπ))) |
26 | 18, 25 | sylan2 593 |
. . . . 5
β’ (((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β§ π β (β0 β
((coe1βπΊ)
supp (0gβπ
)))) β ((coe1β((π΄βπΉ) Β· πΊ))βπ) = (πΉ(.rβπ
)((coe1βπΊ)βπ))) |
27 | | eqid 2732 |
. . . . . . . . 9
β’
(coe1βπΊ) = (coe1βπΊ) |
28 | 27, 6, 1, 5 | coe1f 21726 |
. . . . . . . 8
β’ (πΊ β π΅ β (coe1βπΊ):β0βΆπΎ) |
29 | 28 | 3ad2ant3 1135 |
. . . . . . 7
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β (coe1βπΊ):β0βΆπΎ) |
30 | | ssidd 4004 |
. . . . . . 7
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β ((coe1βπΊ) supp
(0gβπ
))
β ((coe1βπΊ) supp (0gβπ
))) |
31 | | nn0ex 12474 |
. . . . . . . 8
β’
β0 β V |
32 | 31 | a1i 11 |
. . . . . . 7
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β β0 β
V) |
33 | | fvexd 6903 |
. . . . . . 7
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β (0gβπ
) β V) |
34 | 29, 30, 32, 33 | suppssr 8177 |
. . . . . 6
β’ (((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β§ π β (β0 β
((coe1βπΊ)
supp (0gβπ
)))) β ((coe1βπΊ)βπ) = (0gβπ
)) |
35 | 34 | oveq2d 7421 |
. . . . 5
β’ (((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β§ π β (β0 β
((coe1βπΊ)
supp (0gβπ
)))) β (πΉ(.rβπ
)((coe1βπΊ)βπ)) = (πΉ(.rβπ
)(0gβπ
))) |
36 | | eqid 2732 |
. . . . . . . 8
β’
(0gβπ
) = (0gβπ
) |
37 | 5, 23, 36 | ringrz 20101 |
. . . . . . 7
β’ ((π
β Ring β§ πΉ β πΎ) β (πΉ(.rβπ
)(0gβπ
)) = (0gβπ
)) |
38 | 37 | 3adant3 1132 |
. . . . . 6
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β (πΉ(.rβπ
)(0gβπ
)) = (0gβπ
)) |
39 | 38 | adantr 481 |
. . . . 5
β’ (((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β§ π β (β0 β
((coe1βπΊ)
supp (0gβπ
)))) β (πΉ(.rβπ
)(0gβπ
)) = (0gβπ
)) |
40 | 26, 35, 39 | 3eqtrd 2776 |
. . . 4
β’ (((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β§ π β (β0 β
((coe1βπΊ)
supp (0gβπ
)))) β ((coe1β((π΄βπΉ) Β· πΊ))βπ) = (0gβπ
)) |
41 | 17, 40 | suppss 8175 |
. . 3
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β ((coe1β((π΄βπΉ) Β· πΊ)) supp (0gβπ
)) β
((coe1βπΊ)
supp (0gβπ
))) |
42 | | suppssdm 8158 |
. . . . 5
β’
((coe1βπΊ) supp (0gβπ
)) β dom
(coe1βπΊ) |
43 | 42, 29 | fssdm 6734 |
. . . 4
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β ((coe1βπΊ) supp
(0gβπ
))
β β0) |
44 | | nn0ssre 12472 |
. . . . 5
β’
β0 β β |
45 | | ressxr 11254 |
. . . . 5
β’ β
β β* |
46 | 44, 45 | sstri 3990 |
. . . 4
β’
β0 β β* |
47 | 43, 46 | sstrdi 3993 |
. . 3
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β ((coe1βπΊ) supp
(0gβπ
))
β β*) |
48 | | supxrss 13307 |
. . 3
β’
((((coe1β((π΄βπΉ) Β· πΊ)) supp (0gβπ
)) β
((coe1βπΊ)
supp (0gβπ
)) β§ ((coe1βπΊ) supp
(0gβπ
))
β β*) β sup(((coe1β((π΄βπΉ) Β· πΊ)) supp (0gβπ
)), β*, < )
β€ sup(((coe1βπΊ) supp (0gβπ
)), β*, <
)) |
49 | 41, 47, 48 | syl2anc 584 |
. 2
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β sup(((coe1β((π΄βπΉ) Β· πΊ)) supp (0gβπ
)), β*, < )
β€ sup(((coe1βπΊ) supp (0gβπ
)), β*, <
)) |
50 | | deg1mul3le.d |
. . . 4
β’ π· = ( deg1
βπ
) |
51 | 50, 1, 6, 36, 15 | deg1val 25605 |
. . 3
β’ (((π΄βπΉ) Β· πΊ) β π΅ β (π·β((π΄βπΉ) Β· πΊ)) = sup(((coe1β((π΄βπΉ) Β· πΊ)) supp (0gβπ
)), β*, <
)) |
52 | 14, 51 | syl 17 |
. 2
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β (π·β((π΄βπΉ) Β· πΊ)) = sup(((coe1β((π΄βπΉ) Β· πΊ)) supp (0gβπ
)), β*, <
)) |
53 | 50, 1, 6, 36, 27 | deg1val 25605 |
. . 3
β’ (πΊ β π΅ β (π·βπΊ) = sup(((coe1βπΊ) supp
(0gβπ
)),
β*, < )) |
54 | 53 | 3ad2ant3 1135 |
. 2
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β (π·βπΊ) = sup(((coe1βπΊ) supp
(0gβπ
)),
β*, < )) |
55 | 49, 52, 54 | 3brtr4d 5179 |
1
β’ ((π
β Ring β§ πΉ β πΎ β§ πΊ β π΅) β (π·β((π΄βπΉ) Β· πΊ)) β€ (π·βπΊ)) |