MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1mul3le Structured version   Visualization version   GIF version

Theorem deg1mul3le 26156
Description: Degree of multiplication of a polynomial on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
deg1mul3le.d 𝐷 = (deg1𝑅)
deg1mul3le.p 𝑃 = (Poly1𝑅)
deg1mul3le.k 𝐾 = (Base‘𝑅)
deg1mul3le.b 𝐵 = (Base‘𝑃)
deg1mul3le.t · = (.r𝑃)
deg1mul3le.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
deg1mul3le ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) ≤ (𝐷𝐺))

Proof of Theorem deg1mul3le
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 deg1mul3le.p . . . . . . . 8 𝑃 = (Poly1𝑅)
21ply1ring 22249 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant1 1134 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝑃 ∈ Ring)
4 deg1mul3le.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
5 deg1mul3le.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
6 deg1mul3le.b . . . . . . . . 9 𝐵 = (Base‘𝑃)
71, 4, 5, 6ply1sclf 22288 . . . . . . . 8 (𝑅 ∈ Ring → 𝐴:𝐾𝐵)
873ad2ant1 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐴:𝐾𝐵)
9 simp2 1138 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐹𝐾)
108, 9ffvelcdmd 7105 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐴𝐹) ∈ 𝐵)
11 simp3 1139 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐺𝐵)
12 deg1mul3le.t . . . . . . 7 · = (.r𝑃)
136, 12ringcl 20247 . . . . . 6 ((𝑃 ∈ Ring ∧ (𝐴𝐹) ∈ 𝐵𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
143, 10, 11, 13syl3anc 1373 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
15 eqid 2737 . . . . . 6 (coe1‘((𝐴𝐹) · 𝐺)) = (coe1‘((𝐴𝐹) · 𝐺))
1615, 6, 1, 5coe1f 22213 . . . . 5 (((𝐴𝐹) · 𝐺) ∈ 𝐵 → (coe1‘((𝐴𝐹) · 𝐺)):ℕ0𝐾)
1714, 16syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (coe1‘((𝐴𝐹) · 𝐺)):ℕ0𝐾)
18 eldifi 4131 . . . . . 6 (𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅))) → 𝑎 ∈ ℕ0)
19 simpl1 1192 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝑅 ∈ Ring)
20 simpl2 1193 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝐹𝐾)
21 simpl3 1194 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝐺𝐵)
22 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝑎 ∈ ℕ0)
23 eqid 2737 . . . . . . . 8 (.r𝑅) = (.r𝑅)
241, 6, 5, 4, 12, 23coe1sclmulfv 22286 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
2519, 20, 21, 22, 24syl121anc 1377 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
2618, 25sylan2 593 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
27 eqid 2737 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
2827, 6, 1, 5coe1f 22213 . . . . . . . 8 (𝐺𝐵 → (coe1𝐺):ℕ0𝐾)
29283ad2ant3 1136 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (coe1𝐺):ℕ0𝐾)
30 ssidd 4007 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)))
31 nn0ex 12532 . . . . . . . 8 0 ∈ V
3231a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ℕ0 ∈ V)
33 fvexd 6921 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (0g𝑅) ∈ V)
3429, 30, 32, 33suppssr 8220 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1𝐺)‘𝑎) = (0g𝑅))
3534oveq2d 7447 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → (𝐹(.r𝑅)((coe1𝐺)‘𝑎)) = (𝐹(.r𝑅)(0g𝑅)))
36 eqid 2737 . . . . . . . 8 (0g𝑅) = (0g𝑅)
375, 23, 36ringrz 20291 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
38373adant3 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
3938adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
4026, 35, 393eqtrd 2781 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (0g𝑅))
4117, 40suppss 8219 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)))
42 suppssdm 8202 . . . . 5 ((coe1𝐺) supp (0g𝑅)) ⊆ dom (coe1𝐺)
4342, 29fssdm 6755 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ℕ0)
44 nn0ssre 12530 . . . . 5 0 ⊆ ℝ
45 ressxr 11305 . . . . 5 ℝ ⊆ ℝ*
4644, 45sstri 3993 . . . 4 0 ⊆ ℝ*
4743, 46sstrdi 3996 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ℝ*)
48 supxrss 13374 . . 3 ((((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)) ∧ ((coe1𝐺) supp (0g𝑅)) ⊆ ℝ*) → sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ) ≤ sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
4941, 47, 48syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ) ≤ sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
50 deg1mul3le.d . . . 4 𝐷 = (deg1𝑅)
5150, 1, 6, 36, 15deg1val 26135 . . 3 (((𝐴𝐹) · 𝐺) ∈ 𝐵 → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
5214, 51syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
5350, 1, 6, 36, 27deg1val 26135 . . 3 (𝐺𝐵 → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
54533ad2ant3 1136 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
5549, 52, 543brtr4d 5175 1 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) ≤ (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948  wss 3951   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431   supp csupp 8185  supcsup 9480  cr 11154  *cxr 11294   < clt 11295  cle 11296  0cn0 12526  Basecbs 17247  .rcmulr 17298  0gc0g 17484  Ringcrg 20230  algSccascl 21872  Poly1cpl1 22178  coe1cco1 22179  deg1cdg1 26093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-cnfld 21365  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-mdeg 26094  df-deg1 26095
This theorem is referenced by:  rtelextdg2lem  33767  hbtlem2  43136
  Copyright terms: Public domain W3C validator