MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1mul3le Structured version   Visualization version   GIF version

Theorem deg1mul3le 25309
Description: Degree of multiplication of a polynomial on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
deg1mul3le.d 𝐷 = ( deg1𝑅)
deg1mul3le.p 𝑃 = (Poly1𝑅)
deg1mul3le.k 𝐾 = (Base‘𝑅)
deg1mul3le.b 𝐵 = (Base‘𝑃)
deg1mul3le.t · = (.r𝑃)
deg1mul3le.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
deg1mul3le ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) ≤ (𝐷𝐺))

Proof of Theorem deg1mul3le
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 deg1mul3le.p . . . . . . . 8 𝑃 = (Poly1𝑅)
21ply1ring 21447 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
323ad2ant1 1131 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝑃 ∈ Ring)
4 deg1mul3le.a . . . . . . . . 9 𝐴 = (algSc‘𝑃)
5 deg1mul3le.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
6 deg1mul3le.b . . . . . . . . 9 𝐵 = (Base‘𝑃)
71, 4, 5, 6ply1sclf 21484 . . . . . . . 8 (𝑅 ∈ Ring → 𝐴:𝐾𝐵)
873ad2ant1 1131 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐴:𝐾𝐵)
9 simp2 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐹𝐾)
108, 9ffvelcdmd 6982 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐴𝐹) ∈ 𝐵)
11 simp3 1136 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → 𝐺𝐵)
12 deg1mul3le.t . . . . . . 7 · = (.r𝑃)
136, 12ringcl 19828 . . . . . 6 ((𝑃 ∈ Ring ∧ (𝐴𝐹) ∈ 𝐵𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
143, 10, 11, 13syl3anc 1369 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
15 eqid 2733 . . . . . 6 (coe1‘((𝐴𝐹) · 𝐺)) = (coe1‘((𝐴𝐹) · 𝐺))
1615, 6, 1, 5coe1f 21410 . . . . 5 (((𝐴𝐹) · 𝐺) ∈ 𝐵 → (coe1‘((𝐴𝐹) · 𝐺)):ℕ0𝐾)
1714, 16syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (coe1‘((𝐴𝐹) · 𝐺)):ℕ0𝐾)
18 eldifi 4064 . . . . . 6 (𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅))) → 𝑎 ∈ ℕ0)
19 simpl1 1189 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝑅 ∈ Ring)
20 simpl2 1190 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝐹𝐾)
21 simpl3 1191 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝐺𝐵)
22 simpr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → 𝑎 ∈ ℕ0)
23 eqid 2733 . . . . . . . 8 (.r𝑅) = (.r𝑅)
241, 6, 5, 4, 12, 23coe1sclmulfv 21482 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
2519, 20, 21, 22, 24syl121anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ ℕ0) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
2618, 25sylan2 592 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (𝐹(.r𝑅)((coe1𝐺)‘𝑎)))
27 eqid 2733 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
2827, 6, 1, 5coe1f 21410 . . . . . . . 8 (𝐺𝐵 → (coe1𝐺):ℕ0𝐾)
29283ad2ant3 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (coe1𝐺):ℕ0𝐾)
30 ssidd 3946 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)))
31 nn0ex 12267 . . . . . . . 8 0 ∈ V
3231a1i 11 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ℕ0 ∈ V)
33 fvexd 6807 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (0g𝑅) ∈ V)
3429, 30, 32, 33suppssr 8032 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1𝐺)‘𝑎) = (0g𝑅))
3534oveq2d 7311 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → (𝐹(.r𝑅)((coe1𝐺)‘𝑎)) = (𝐹(.r𝑅)(0g𝑅)))
36 eqid 2733 . . . . . . . 8 (0g𝑅) = (0g𝑅)
375, 23, 36ringrz 19855 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐾) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
38373adant3 1130 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
3938adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → (𝐹(.r𝑅)(0g𝑅)) = (0g𝑅))
4026, 35, 393eqtrd 2777 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) ∧ 𝑎 ∈ (ℕ0 ∖ ((coe1𝐺) supp (0g𝑅)))) → ((coe1‘((𝐴𝐹) · 𝐺))‘𝑎) = (0g𝑅))
4117, 40suppss 8030 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)))
42 suppssdm 8013 . . . . 5 ((coe1𝐺) supp (0g𝑅)) ⊆ dom (coe1𝐺)
4342, 29fssdm 6638 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ℕ0)
44 nn0ssre 12265 . . . . 5 0 ⊆ ℝ
45 ressxr 11047 . . . . 5 ℝ ⊆ ℝ*
4644, 45sstri 3932 . . . 4 0 ⊆ ℝ*
4743, 46sstrdi 3935 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → ((coe1𝐺) supp (0g𝑅)) ⊆ ℝ*)
48 supxrss 13094 . . 3 ((((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) ⊆ ((coe1𝐺) supp (0g𝑅)) ∧ ((coe1𝐺) supp (0g𝑅)) ⊆ ℝ*) → sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ) ≤ sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
4941, 47, 48syl2anc 583 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ) ≤ sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
50 deg1mul3le.d . . . 4 𝐷 = ( deg1𝑅)
5150, 1, 6, 36, 15deg1val 25289 . . 3 (((𝐴𝐹) · 𝐺) ∈ 𝐵 → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
5214, 51syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
5350, 1, 6, 36, 27deg1val 25289 . . 3 (𝐺𝐵 → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
54533ad2ant3 1133 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
5549, 52, 543brtr4d 5109 1 ((𝑅 ∈ Ring ∧ 𝐹𝐾𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) ≤ (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1537  wcel 2101  Vcvv 3434  cdif 3886  wss 3889   class class class wbr 5077  wf 6443  cfv 6447  (class class class)co 7295   supp csupp 7997  supcsup 9227  cr 10898  *cxr 11036   < clt 11037  cle 11038  0cn0 12261  Basecbs 16940  .rcmulr 16991  0gc0g 17178  Ringcrg 19811  algSccascl 21087  Poly1cpl1 21376  coe1cco1 21377   deg1 cdg1 25244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976  ax-pre-sup 10977  ax-addf 10978  ax-mulf 10979
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-iin 4930  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-isom 6456  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-of 7553  df-ofr 7554  df-om 7733  df-1st 7851  df-2nd 7852  df-supp 7998  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-map 8637  df-pm 8638  df-ixp 8706  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-fsupp 9157  df-sup 9229  df-oi 9297  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-nn 12002  df-2 12064  df-3 12065  df-4 12066  df-5 12067  df-6 12068  df-7 12069  df-8 12070  df-9 12071  df-n0 12262  df-z 12348  df-dec 12466  df-uz 12611  df-fz 13268  df-fzo 13411  df-seq 13750  df-hash 14073  df-struct 16876  df-sets 16893  df-slot 16911  df-ndx 16923  df-base 16941  df-ress 16970  df-plusg 17003  df-mulr 17004  df-starv 17005  df-sca 17006  df-vsca 17007  df-tset 17009  df-ple 17010  df-ds 17012  df-unif 17013  df-0g 17180  df-gsum 17181  df-mre 17323  df-mrc 17324  df-acs 17326  df-mgm 18354  df-sgrp 18403  df-mnd 18414  df-mhm 18458  df-submnd 18459  df-grp 18608  df-minusg 18609  df-sbg 18610  df-mulg 18729  df-subg 18780  df-ghm 18860  df-cntz 18951  df-cmn 19416  df-abl 19417  df-mgp 19749  df-ur 19766  df-ring 19813  df-cring 19814  df-subrg 20050  df-lmod 20153  df-lss 20222  df-cnfld 20626  df-ascl 21090  df-psr 21140  df-mvr 21141  df-mpl 21142  df-opsr 21144  df-psr1 21379  df-vr1 21380  df-ply1 21381  df-coe1 21382  df-mdeg 25245  df-deg1 25246
This theorem is referenced by:  hbtlem2  40973
  Copyright terms: Public domain W3C validator