Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprlubrd Structured version   Visualization version   GIF version

Theorem suprlubrd 42910
Description: Natural deduction form of specialized suprlub 12177. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
suprlubrd.1 (𝜑𝐴 ⊆ ℝ)
suprlubrd.2 (𝜑𝐴 ≠ ∅)
suprlubrd.3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
suprlubrd.4 (𝜑𝐵 ∈ ℝ)
suprlubrd.5 (𝜑 → ∃𝑧𝐴 𝐵 < 𝑧)
Assertion
Ref Expression
suprlubrd (𝜑𝐵 < sup(𝐴, ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑧,𝐴   𝑧,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem suprlubrd
StepHypRef Expression
1 suprlubrd.5 . 2 (𝜑 → ∃𝑧𝐴 𝐵 < 𝑧)
2 suprlubrd.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
3 suprlubrd.2 . . . . . 6 (𝜑𝐴 ≠ ∅)
4 suprlubrd.3 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
5 suprlubrd.4 . . . . . 6 (𝜑𝐵 ∈ ℝ)
6 suprlub 12177 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐵 ∈ ℝ) → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐵 < 𝑧))
72, 3, 4, 5, 6syl31anc 1373 . . . . 5 (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐵 < 𝑧))
87bicomd 222 . . . 4 (𝜑 → (∃𝑧𝐴 𝐵 < 𝑧𝐵 < sup(𝐴, ℝ, < )))
98biimpd 228 . . 3 (𝜑 → (∃𝑧𝐴 𝐵 < 𝑧𝐵 < sup(𝐴, ℝ, < )))
109imp 407 . 2 ((𝜑 ∧ ∃𝑧𝐴 𝐵 < 𝑧) → 𝐵 < sup(𝐴, ℝ, < ))
111, 10mpdan 685 1 (𝜑𝐵 < sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  wne 2940  wral 3061  wrex 3070  wss 3948  c0 4322   class class class wbr 5148  supcsup 9434  cr 11108   < clt 11247  cle 11248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446
This theorem is referenced by:  imo72b2lem1  42911
  Copyright terms: Public domain W3C validator