Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprlubrd Structured version   Visualization version   GIF version

Theorem suprlubrd 44161
Description: Natural deduction form of specialized suprlub 12108. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
suprlubrd.1 (𝜑𝐴 ⊆ ℝ)
suprlubrd.2 (𝜑𝐴 ≠ ∅)
suprlubrd.3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
suprlubrd.4 (𝜑𝐵 ∈ ℝ)
suprlubrd.5 (𝜑 → ∃𝑧𝐴 𝐵 < 𝑧)
Assertion
Ref Expression
suprlubrd (𝜑𝐵 < sup(𝐴, ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑧,𝐴   𝑧,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem suprlubrd
StepHypRef Expression
1 suprlubrd.5 . 2 (𝜑 → ∃𝑧𝐴 𝐵 < 𝑧)
2 suprlubrd.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
3 suprlubrd.2 . . . . . 6 (𝜑𝐴 ≠ ∅)
4 suprlubrd.3 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
5 suprlubrd.4 . . . . . 6 (𝜑𝐵 ∈ ℝ)
6 suprlub 12108 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐵 ∈ ℝ) → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐵 < 𝑧))
72, 3, 4, 5, 6syl31anc 1375 . . . . 5 (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐵 < 𝑧))
87bicomd 223 . . . 4 (𝜑 → (∃𝑧𝐴 𝐵 < 𝑧𝐵 < sup(𝐴, ℝ, < )))
98biimpd 229 . . 3 (𝜑 → (∃𝑧𝐴 𝐵 < 𝑧𝐵 < sup(𝐴, ℝ, < )))
109imp 406 . 2 ((𝜑 ∧ ∃𝑧𝐴 𝐵 < 𝑧) → 𝐵 < sup(𝐴, ℝ, < ))
111, 10mpdan 687 1 (𝜑𝐵 < sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3905  c0 4286   class class class wbr 5095  supcsup 9349  cr 11027   < clt 11168  cle 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369
This theorem is referenced by:  imo72b2lem1  44162
  Copyright terms: Public domain W3C validator