Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprlubrd Structured version   Visualization version   GIF version

Theorem suprlubrd 43598
Description: Natural deduction form of specialized suprlub 12209. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
suprlubrd.1 (𝜑𝐴 ⊆ ℝ)
suprlubrd.2 (𝜑𝐴 ≠ ∅)
suprlubrd.3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
suprlubrd.4 (𝜑𝐵 ∈ ℝ)
suprlubrd.5 (𝜑 → ∃𝑧𝐴 𝐵 < 𝑧)
Assertion
Ref Expression
suprlubrd (𝜑𝐵 < sup(𝐴, ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑧,𝐴   𝑧,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦)

Proof of Theorem suprlubrd
StepHypRef Expression
1 suprlubrd.5 . 2 (𝜑 → ∃𝑧𝐴 𝐵 < 𝑧)
2 suprlubrd.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
3 suprlubrd.2 . . . . . 6 (𝜑𝐴 ≠ ∅)
4 suprlubrd.3 . . . . . 6 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
5 suprlubrd.4 . . . . . 6 (𝜑𝐵 ∈ ℝ)
6 suprlub 12209 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝐵 ∈ ℝ) → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐵 < 𝑧))
72, 3, 4, 5, 6syl31anc 1371 . . . . 5 (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐵 < 𝑧))
87bicomd 222 . . . 4 (𝜑 → (∃𝑧𝐴 𝐵 < 𝑧𝐵 < sup(𝐴, ℝ, < )))
98biimpd 228 . . 3 (𝜑 → (∃𝑧𝐴 𝐵 < 𝑧𝐵 < sup(𝐴, ℝ, < )))
109imp 406 . 2 ((𝜑 ∧ ∃𝑧𝐴 𝐵 < 𝑧) → 𝐵 < sup(𝐴, ℝ, < ))
111, 10mpdan 686 1 (𝜑𝐵 < sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2099  wne 2937  wral 3058  wrex 3067  wss 3947  c0 4323   class class class wbr 5148  supcsup 9464  cr 11138   < clt 11279  cle 11280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478
This theorem is referenced by:  imo72b2lem1  43599
  Copyright terms: Public domain W3C validator