| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suprlubrd | Structured version Visualization version GIF version | ||
| Description: Natural deduction form of specialized suprlub 12232. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| suprlubrd.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| suprlubrd.2 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| suprlubrd.3 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| suprlubrd.4 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| suprlubrd.5 | ⊢ (𝜑 → ∃𝑧 ∈ 𝐴 𝐵 < 𝑧) |
| Ref | Expression |
|---|---|
| suprlubrd | ⊢ (𝜑 → 𝐵 < sup(𝐴, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprlubrd.5 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ 𝐴 𝐵 < 𝑧) | |
| 2 | suprlubrd.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 3 | suprlubrd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 4 | suprlubrd.3 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
| 5 | suprlubrd.4 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 6 | suprlub 12232 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝐵 ∈ ℝ) → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧)) | |
| 7 | 2, 3, 4, 5, 6 | syl31anc 1375 | . . . . 5 ⊢ (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧)) |
| 8 | 7 | bicomd 223 | . . . 4 ⊢ (𝜑 → (∃𝑧 ∈ 𝐴 𝐵 < 𝑧 ↔ 𝐵 < sup(𝐴, ℝ, < ))) |
| 9 | 8 | biimpd 229 | . . 3 ⊢ (𝜑 → (∃𝑧 ∈ 𝐴 𝐵 < 𝑧 → 𝐵 < sup(𝐴, ℝ, < ))) |
| 10 | 9 | imp 406 | . 2 ⊢ ((𝜑 ∧ ∃𝑧 ∈ 𝐴 𝐵 < 𝑧) → 𝐵 < sup(𝐴, ℝ, < )) |
| 11 | 1, 10 | mpdan 687 | 1 ⊢ (𝜑 → 𝐵 < sup(𝐴, ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 ∅c0 4333 class class class wbr 5143 supcsup 9480 ℝcr 11154 < clt 11295 ≤ cle 11296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 |
| This theorem is referenced by: imo72b2lem1 44182 |
| Copyright terms: Public domain | W3C validator |