| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > euendfunc2 | Structured version Visualization version GIF version | ||
| Description: If there exists a unique endofunctor (a functor from a category to itself) for a category, then it is either initial (empty) or terminal. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| euendfunc2 | ⊢ ((𝐶 Func 𝐶) ≈ 1o → ((Base‘𝐶) = ∅ ∨ 𝐶 ∈ TermCat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euen1b 9037 | . . . . . 6 ⊢ ((𝐶 Func 𝐶) ≈ 1o ↔ ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐶)) | |
| 2 | 1 | biimpi 216 | . . . . 5 ⊢ ((𝐶 Func 𝐶) ≈ 1o → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐶)) |
| 3 | 2 | adantr 480 | . . . 4 ⊢ (((𝐶 Func 𝐶) ≈ 1o ∧ ¬ (Base‘𝐶) = ∅) → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐶)) |
| 4 | eqid 2734 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | simpr 484 | . . . . 5 ⊢ (((𝐶 Func 𝐶) ≈ 1o ∧ ¬ (Base‘𝐶) = ∅) → ¬ (Base‘𝐶) = ∅) | |
| 6 | 5 | neqned 2938 | . . . 4 ⊢ (((𝐶 Func 𝐶) ≈ 1o ∧ ¬ (Base‘𝐶) = ∅) → (Base‘𝐶) ≠ ∅) |
| 7 | 3, 4, 6 | euendfunc 49272 | . . 3 ⊢ (((𝐶 Func 𝐶) ≈ 1o ∧ ¬ (Base‘𝐶) = ∅) → 𝐶 ∈ TermCat) |
| 8 | 7 | ex 412 | . 2 ⊢ ((𝐶 Func 𝐶) ≈ 1o → (¬ (Base‘𝐶) = ∅ → 𝐶 ∈ TermCat)) |
| 9 | 8 | orrd 863 | 1 ⊢ ((𝐶 Func 𝐶) ≈ 1o → ((Base‘𝐶) = ∅ ∨ 𝐶 ∈ TermCat)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∃!weu 2566 ∅c0 4306 class class class wbr 5117 ‘cfv 6528 (class class class)co 7400 1oc1o 8468 ≈ cen 8951 Basecbs 17215 Func cfunc 17854 TermCatctermc 49219 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-map 8837 df-ixp 8907 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-fz 13515 df-struct 17153 df-slot 17188 df-ndx 17200 df-base 17216 df-hom 17282 df-cco 17283 df-cat 17667 df-cid 17668 df-func 17858 df-idfu 17859 df-nat 17946 df-fuc 17947 df-xpc 18171 df-1stf 18172 df-curf 18213 df-diag 18215 df-thinc 49167 df-termc 49220 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |