Proof of Theorem cdlemk1u
Step | Hyp | Ref
| Expression |
1 | | simp11l 1283 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → 𝐾 ∈ HL) |
2 | | simp22l 1291 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → 𝑃 ∈ 𝐴) |
3 | | simp11 1202 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
4 | | simp13 1204 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → 𝐷 ∈ 𝑇) |
5 | | simp32 1209 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → 𝐷 ≠ ( I ↾ 𝐵)) |
6 | | cdlemk1.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
7 | | cdlemk1.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
8 | | cdlemk1.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
9 | | cdlemk1.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
10 | | cdlemk1.r |
. . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
11 | 6, 7, 8, 9, 10 | trlnidat 38187 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐷 ∈ 𝑇 ∧ 𝐷 ≠ ( I ↾ 𝐵)) → (𝑅‘𝐷) ∈ 𝐴) |
12 | 3, 4, 5, 11 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑅‘𝐷) ∈ 𝐴) |
13 | | cdlemk1.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
14 | | cdlemk1.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
15 | 13, 14, 7 | hlatlej1 37389 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝑅‘𝐷) ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ (𝑅‘𝐷))) |
16 | 1, 2, 12, 15 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → 𝑃 ≤ (𝑃 ∨ (𝑅‘𝐷))) |
17 | | cdlemk1.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
18 | | cdlemk1.s |
. . . 4
⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
19 | | cdlemk1.o |
. . . 4
⊢ 𝑂 = (𝑆‘𝐷) |
20 | 6, 13, 14, 17, 7, 8, 9, 10, 18, 19 | cdlemkole 38867 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑂‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐷))) |
21 | 1 | hllatd 37378 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → 𝐾 ∈ Lat) |
22 | 6, 7 | atbase 37303 |
. . . . 5
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
23 | 2, 22 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → 𝑃 ∈ 𝐵) |
24 | 6, 13, 14, 17, 7, 8, 9, 10, 18, 19 | cdlemkoatnle 38865 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → ((𝑂‘𝑃) ∈ 𝐴 ∧ ¬ (𝑂‘𝑃) ≤ 𝑊)) |
25 | 24 | simpld 495 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑂‘𝑃) ∈ 𝐴) |
26 | 6, 7 | atbase 37303 |
. . . . 5
⊢ ((𝑂‘𝑃) ∈ 𝐴 → (𝑂‘𝑃) ∈ 𝐵) |
27 | 25, 26 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑂‘𝑃) ∈ 𝐵) |
28 | 6, 14, 7 | hlatjcl 37381 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝑅‘𝐷) ∈ 𝐴) → (𝑃 ∨ (𝑅‘𝐷)) ∈ 𝐵) |
29 | 1, 2, 12, 28 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑃 ∨ (𝑅‘𝐷)) ∈ 𝐵) |
30 | 6, 13, 14 | latjle12 18168 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ (𝑂‘𝑃) ∈ 𝐵 ∧ (𝑃 ∨ (𝑅‘𝐷)) ∈ 𝐵)) → ((𝑃 ≤ (𝑃 ∨ (𝑅‘𝐷)) ∧ (𝑂‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐷))) ↔ (𝑃 ∨ (𝑂‘𝑃)) ≤ (𝑃 ∨ (𝑅‘𝐷)))) |
31 | 21, 23, 27, 29, 30 | syl13anc 1371 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → ((𝑃 ≤ (𝑃 ∨ (𝑅‘𝐷)) ∧ (𝑂‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐷))) ↔ (𝑃 ∨ (𝑂‘𝑃)) ≤ (𝑃 ∨ (𝑅‘𝐷)))) |
32 | 16, 20, 31 | mpbi2and 709 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑃 ∨ (𝑂‘𝑃)) ≤ (𝑃 ∨ (𝑅‘𝐷))) |
33 | | simp22 1206 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
34 | 13, 14, 7, 8, 9, 10 | trljat3 38182 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐷 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝐷)) = ((𝐷‘𝑃) ∨ (𝑅‘𝐷))) |
35 | 3, 4, 33, 34 | syl3anc 1370 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑃 ∨ (𝑅‘𝐷)) = ((𝐷‘𝑃) ∨ (𝑅‘𝐷))) |
36 | 32, 35 | breqtrd 5100 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) → (𝑃 ∨ (𝑂‘𝑃)) ≤ ((𝐷‘𝑃) ∨ (𝑅‘𝐷))) |