MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddid1d Structured version   Visualization version   GIF version

Theorem xaddid1d 12447
Description: 0 is a right identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
xaddid1d.1 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
xaddid1d (𝜑 → (𝐴 +𝑒 0) = 𝐴)

Proof of Theorem xaddid1d
StepHypRef Expression
1 xaddid1d.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 xaddid1 12445 . 2 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
31, 2syl 17 1 (𝜑 → (𝐴 +𝑒 0) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2050  (class class class)co 6970  0cc0 10329  *cxr 10467   +𝑒 cxad 12316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-po 5320  df-so 5321  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-xadd 12319
This theorem is referenced by:  xadddi2  12500  xrs1mnd  20279  xrs10  20280  psmetsym  22617  xmetsym  22654  stdbdxmet  22822  xrge0gsumle  23138  metdsle  23157  metnrmlem1  23164  p1evtxdeq  26992  ismeannd  42180  caragenunidm  42221
  Copyright terms: Public domain W3C validator