| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metdsle | Structured version Visualization version GIF version | ||
| Description: The distance from a point to a set is bounded by the distance to any member of the set. (Contributed by Mario Carneiro, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
| Ref | Expression |
|---|---|
| metdsle | ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐵) ≤ (𝐴𝐷𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
| 2 | simpr 484 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ 𝑋) | |
| 3 | 2 | sselda 3948 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝐴 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
| 4 | 3 | adantrr 717 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
| 5 | 1, 4 | jca 511 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
| 6 | metdscn.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
| 7 | 6 | metdstri 24746 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐹‘𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴))) |
| 8 | 5, 7 | syldan 591 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴))) |
| 9 | simpll 766 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 10 | xmetsym 24241 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵)) | |
| 11 | 9, 1, 4, 10 | syl3anc 1373 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵)) |
| 12 | 6 | metds0 24745 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑆) → (𝐹‘𝐴) = 0) |
| 13 | 12 | 3expa 1118 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝐴 ∈ 𝑆) → (𝐹‘𝐴) = 0) |
| 14 | 13 | adantrr 717 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐴) = 0) |
| 15 | 11, 14 | oveq12d 7407 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴)) = ((𝐴𝐷𝐵) +𝑒 0)) |
| 16 | xmetcl 24225 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
| 17 | 9, 4, 1, 16 | syl3anc 1373 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ∈ ℝ*) |
| 18 | 17 | xaddridd 13209 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵)) |
| 19 | 15, 18 | eqtrd 2765 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → ((𝐵𝐷𝐴) +𝑒 (𝐹‘𝐴)) = (𝐴𝐷𝐵)) |
| 20 | 8, 19 | breqtrd 5135 | 1 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐵) ≤ (𝐴𝐷𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 class class class wbr 5109 ↦ cmpt 5190 ran crn 5641 ‘cfv 6513 (class class class)co 7389 infcinf 9398 0cc0 11074 ℝ*cxr 11213 < clt 11214 ≤ cle 11215 +𝑒 cxad 13076 ∞Metcxmet 21255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-er 8673 df-ec 8675 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-2 12250 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-icc 13319 df-psmet 21262 df-xmet 21263 df-bl 21265 |
| This theorem is referenced by: metdsre 24748 |
| Copyright terms: Public domain | W3C validator |