MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsle Structured version   Visualization version   GIF version

Theorem metdsle 24218
Description: The distance from a point to a set is bounded by the distance to any member of the set. (Contributed by Mario Carneiro, 5-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (π‘₯ ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (π‘₯𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsle (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐡 ∈ 𝑋)) β†’ (πΉβ€˜π΅) ≀ (𝐴𝐷𝐡))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝐷,𝑦   π‘₯,𝐡,𝑦   π‘₯,𝑆,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐹(π‘₯,𝑦)

Proof of Theorem metdsle
StepHypRef Expression
1 simprr 772 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐡 ∈ 𝑋)) β†’ 𝐡 ∈ 𝑋)
2 simpr 486 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) β†’ 𝑆 βŠ† 𝑋)
32sselda 3945 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ 𝐴 ∈ 𝑆) β†’ 𝐴 ∈ 𝑋)
43adantrr 716 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐡 ∈ 𝑋)) β†’ 𝐴 ∈ 𝑋)
51, 4jca 513 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐡 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋))
6 metdscn.f . . . 4 𝐹 = (π‘₯ ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (π‘₯𝐷𝑦)), ℝ*, < ))
76metdstri 24217 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐡 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) β†’ (πΉβ€˜π΅) ≀ ((𝐡𝐷𝐴) +𝑒 (πΉβ€˜π΄)))
85, 7syldan 592 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐡 ∈ 𝑋)) β†’ (πΉβ€˜π΅) ≀ ((𝐡𝐷𝐴) +𝑒 (πΉβ€˜π΄)))
9 simpll 766 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐡 ∈ 𝑋)) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
10 xmetsym 23703 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (𝐡𝐷𝐴) = (𝐴𝐷𝐡))
119, 1, 4, 10syl3anc 1372 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐡𝐷𝐴) = (𝐴𝐷𝐡))
126metds0 24216 . . . . . 6 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋 ∧ 𝐴 ∈ 𝑆) β†’ (πΉβ€˜π΄) = 0)
13123expa 1119 . . . . 5 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ 𝐴 ∈ 𝑆) β†’ (πΉβ€˜π΄) = 0)
1413adantrr 716 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐡 ∈ 𝑋)) β†’ (πΉβ€˜π΄) = 0)
1511, 14oveq12d 7376 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐡 ∈ 𝑋)) β†’ ((𝐡𝐷𝐴) +𝑒 (πΉβ€˜π΄)) = ((𝐴𝐷𝐡) +𝑒 0))
16 xmetcl 23687 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷𝐡) ∈ ℝ*)
179, 4, 1, 16syl3anc 1372 . . . 4 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴𝐷𝐡) ∈ ℝ*)
1817xaddid1d 13163 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐡 ∈ 𝑋)) β†’ ((𝐴𝐷𝐡) +𝑒 0) = (𝐴𝐷𝐡))
1915, 18eqtrd 2777 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐡 ∈ 𝑋)) β†’ ((𝐡𝐷𝐴) +𝑒 (πΉβ€˜π΄)) = (𝐴𝐷𝐡))
208, 19breqtrd 5132 1 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑆 βŠ† 𝑋) ∧ (𝐴 ∈ 𝑆 ∧ 𝐡 ∈ 𝑋)) β†’ (πΉβ€˜π΅) ≀ (𝐴𝐷𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   βŠ† wss 3911   class class class wbr 5106   ↦ cmpt 5189  ran crn 5635  β€˜cfv 6497  (class class class)co 7358  infcinf 9378  0cc0 11052  β„*cxr 11189   < clt 11190   ≀ cle 11191   +𝑒 cxad 13032  βˆžMetcxmet 20784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129  ax-pre-sup 11130
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-er 8649  df-ec 8651  df-map 8768  df-en 8885  df-dom 8886  df-sdom 8887  df-sup 9379  df-inf 9380  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-div 11814  df-2 12217  df-rp 12917  df-xneg 13034  df-xadd 13035  df-xmul 13036  df-icc 13272  df-psmet 20791  df-xmet 20792  df-bl 20794
This theorem is referenced by:  metdsre  24219
  Copyright terms: Public domain W3C validator