MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsle Structured version   Visualization version   GIF version

Theorem metdsle 24757
Description: The distance from a point to a set is bounded by the distance to any member of the set. (Contributed by Mario Carneiro, 5-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsle (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐹𝐵) ≤ (𝐴𝐷𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdsle
StepHypRef Expression
1 simprr 772 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → 𝐵𝑋)
2 simpr 484 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝑆𝑋)
32sselda 3937 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝐴𝑆) → 𝐴𝑋)
43adantrr 717 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → 𝐴𝑋)
51, 4jca 511 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐵𝑋𝐴𝑋))
6 metdscn.f . . . 4 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
76metdstri 24756 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐵𝑋𝐴𝑋)) → (𝐹𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)))
85, 7syldan 591 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐹𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)))
9 simpll 766 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
10 xmetsym 24251 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
119, 1, 4, 10syl3anc 1373 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
126metds0 24755 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) = 0)
13123expa 1118 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝐴𝑆) → (𝐹𝐴) = 0)
1413adantrr 717 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐹𝐴) = 0)
1511, 14oveq12d 7371 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)) = ((𝐴𝐷𝐵) +𝑒 0))
16 xmetcl 24235 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
179, 4, 1, 16syl3anc 1373 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐴𝐷𝐵) ∈ ℝ*)
1817xaddridd 13163 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
1915, 18eqtrd 2764 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)) = (𝐴𝐷𝐵))
208, 19breqtrd 5121 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐹𝐵) ≤ (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3905   class class class wbr 5095  cmpt 5176  ran crn 5624  cfv 6486  (class class class)co 7353  infcinf 9350  0cc0 11028  *cxr 11167   < clt 11168  cle 11169   +𝑒 cxad 13030  ∞Metcxmet 21264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-ec 8634  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-2 12209  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-icc 13273  df-psmet 21271  df-xmet 21272  df-bl 21274
This theorem is referenced by:  metdsre  24758
  Copyright terms: Public domain W3C validator