MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsle Structured version   Visualization version   GIF version

Theorem metdsle 24810
Description: The distance from a point to a set is bounded by the distance to any member of the set. (Contributed by Mario Carneiro, 5-Sep-2015.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsle (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐹𝐵) ≤ (𝐴𝐷𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdsle
StepHypRef Expression
1 simprr 772 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → 𝐵𝑋)
2 simpr 484 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝑆𝑋)
32sselda 3963 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝐴𝑆) → 𝐴𝑋)
43adantrr 717 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → 𝐴𝑋)
51, 4jca 511 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐵𝑋𝐴𝑋))
6 metdscn.f . . . 4 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
76metdstri 24809 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐵𝑋𝐴𝑋)) → (𝐹𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)))
85, 7syldan 591 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐹𝐵) ≤ ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)))
9 simpll 766 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → 𝐷 ∈ (∞Met‘𝑋))
10 xmetsym 24302 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
119, 1, 4, 10syl3anc 1372 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
126metds0 24808 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋𝐴𝑆) → (𝐹𝐴) = 0)
13123expa 1118 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝐴𝑆) → (𝐹𝐴) = 0)
1413adantrr 717 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐹𝐴) = 0)
1511, 14oveq12d 7431 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)) = ((𝐴𝐷𝐵) +𝑒 0))
16 xmetcl 24286 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
179, 4, 1, 16syl3anc 1372 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐴𝐷𝐵) ∈ ℝ*)
1817xaddridd 13267 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → ((𝐴𝐷𝐵) +𝑒 0) = (𝐴𝐷𝐵))
1915, 18eqtrd 2769 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → ((𝐵𝐷𝐴) +𝑒 (𝐹𝐴)) = (𝐴𝐷𝐵))
208, 19breqtrd 5149 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ (𝐴𝑆𝐵𝑋)) → (𝐹𝐵) ≤ (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wss 3931   class class class wbr 5123  cmpt 5205  ran crn 5666  cfv 6541  (class class class)co 7413  infcinf 9463  0cc0 11137  *cxr 11276   < clt 11277  cle 11278   +𝑒 cxad 13134  ∞Metcxmet 21311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-er 8727  df-ec 8729  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-2 12311  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-icc 13376  df-psmet 21318  df-xmet 21319  df-bl 21321
This theorem is referenced by:  metdsre  24811
  Copyright terms: Public domain W3C validator