Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xaddid2 | Structured version Visualization version GIF version |
Description: Extended real version of addid2 10901. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddid2 | ⊢ (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10766 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | xaddcom 12716 | . . 3 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (0 +𝑒 𝐴) = (𝐴 +𝑒 0)) | |
3 | 1, 2 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = (𝐴 +𝑒 0)) |
4 | xaddid1 12717 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) | |
5 | 3, 4 | eqtrd 2773 | 1 ⊢ (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 (class class class)co 7170 0cc0 10615 ℝ*cxr 10752 +𝑒 cxad 12588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-xadd 12591 |
This theorem is referenced by: xaddge0 12734 xsubge0 12737 xadddi2 12773 xrs1mnd 20255 xrs10 20256 imasdsf1olem 23126 stdbdxmet 23268 xaddeq0 30651 xrs0 30861 xrsmulgzz 30864 xrge0adddir 30878 xrge0npcan 30880 metideq 31415 esumrnmpt2 31606 esumpfinvallem 31612 0elcarsg 31844 carsgclctunlem3 31857 xaddid2d 42396 sge0tsms 43460 meadjun 43542 caragencmpl 43615 |
Copyright terms: Public domain | W3C validator |