![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xaddid2 | Structured version Visualization version GIF version |
Description: Extended real version of addid2 10539. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddid2 | ⊢ (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10404 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | xaddcom 12360 | . . 3 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (0 +𝑒 𝐴) = (𝐴 +𝑒 0)) | |
3 | 1, 2 | mpan 683 | . 2 ⊢ (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = (𝐴 +𝑒 0)) |
4 | xaddid1 12361 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) | |
5 | 3, 4 | eqtrd 2862 | 1 ⊢ (𝐴 ∈ ℝ* → (0 +𝑒 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 (class class class)co 6906 0cc0 10253 ℝ*cxr 10391 +𝑒 cxad 12231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-po 5264 df-so 5265 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-xadd 12234 |
This theorem is referenced by: xaddge0 12377 xsubge0 12380 xadddi2 12416 xrs1mnd 20145 xrs10 20146 imasdsf1olem 22549 stdbdxmet 22691 xaddeq0 30066 xrs0 30221 xrsmulgzz 30224 xrge0adddir 30238 xrge0npcan 30240 metideq 30482 esumrnmpt2 30676 esumpfinvallem 30682 0elcarsg 30915 carsgclctunlem3 30928 xaddid2d 40333 sge0tsms 41389 meadjun 41471 caragencmpl 41544 |
Copyright terms: Public domain | W3C validator |